* update github.com/blevesearch/bleve v2.0.2 -> v2.0.3 * github.com/denisenkom/go-mssqldb v0.9.0 -> v0.10.0 * github.com/editorconfig/editorconfig-core-go v2.4.1 -> v2.4.2 * github.com/go-chi/cors v1.1.1 -> v1.2.0 * github.com/go-git/go-billy v5.0.0 -> v5.1.0 * github.com/go-git/go-git v5.2.0 -> v5.3.0 * github.com/go-ldap/ldap v3.2.4 -> v3.3.0 * github.com/go-redis/redis v8.6.0 -> v8.8.2 * github.com/go-sql-driver/mysql v1.5.0 -> v1.6.0 * github.com/go-swagger/go-swagger v0.26.1 -> v0.27.0 * github.com/lib/pq v1.9.0 -> v1.10.1 * github.com/mattn/go-sqlite3 v1.14.6 -> v1.14.7 * github.com/go-testfixtures/testfixtures v3.5.0 -> v3.6.0 * github.com/issue9/identicon v1.0.1 -> v1.2.0 * github.com/klauspost/compress v1.11.8 -> v1.12.1 * github.com/mgechev/revive v1.0.3 -> v1.0.6 * github.com/microcosm-cc/bluemonday v1.0.7 -> v1.0.8 * github.com/niklasfasching/go-org v1.4.0 -> v1.5.0 * github.com/olivere/elastic v7.0.22 -> v7.0.24 * github.com/pelletier/go-toml v1.8.1 -> v1.9.0 * github.com/prometheus/client_golang v1.9.0 -> v1.10.0 * github.com/xanzy/go-gitlab v0.44.0 -> v0.48.0 * github.com/yuin/goldmark v1.3.3 -> v1.3.5 * github.com/6543/go-version v1.2.4 -> v1.3.1 * do github.com/lib/pq v1.10.0 -> v1.10.1 again ...
		
			
				
	
	
		
			726 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
| // Copyright 2019+ Klaus Post. All rights reserved.
 | |
| // License information can be found in the LICENSE file.
 | |
| // Based on work by Yann Collet, released under BSD License.
 | |
| 
 | |
| package zstd
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"math"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// For encoding we only support up to
 | |
| 	maxEncTableLog    = 8
 | |
| 	maxEncTablesize   = 1 << maxTableLog
 | |
| 	maxEncTableMask   = (1 << maxTableLog) - 1
 | |
| 	minEncTablelog    = 5
 | |
| 	maxEncSymbolValue = maxMatchLengthSymbol
 | |
| )
 | |
| 
 | |
| // Scratch provides temporary storage for compression and decompression.
 | |
| type fseEncoder struct {
 | |
| 	symbolLen      uint16 // Length of active part of the symbol table.
 | |
| 	actualTableLog uint8  // Selected tablelog.
 | |
| 	ct             cTable // Compression tables.
 | |
| 	maxCount       int    // count of the most probable symbol
 | |
| 	zeroBits       bool   // no bits has prob > 50%.
 | |
| 	clearCount     bool   // clear count
 | |
| 	useRLE         bool   // This encoder is for RLE
 | |
| 	preDefined     bool   // This encoder is predefined.
 | |
| 	reUsed         bool   // Set to know when the encoder has been reused.
 | |
| 	rleVal         uint8  // RLE Symbol
 | |
| 	maxBits        uint8  // Maximum output bits after transform.
 | |
| 
 | |
| 	// TODO: Technically zstd should be fine with 64 bytes.
 | |
| 	count [256]uint32
 | |
| 	norm  [256]int16
 | |
| }
 | |
| 
 | |
| // cTable contains tables used for compression.
 | |
| type cTable struct {
 | |
| 	tableSymbol []byte
 | |
| 	stateTable  []uint16
 | |
| 	symbolTT    []symbolTransform
 | |
| }
 | |
| 
 | |
| // symbolTransform contains the state transform for a symbol.
 | |
| type symbolTransform struct {
 | |
| 	deltaNbBits    uint32
 | |
| 	deltaFindState int16
 | |
| 	outBits        uint8
 | |
| }
 | |
| 
 | |
| // String prints values as a human readable string.
 | |
| func (s symbolTransform) String() string {
 | |
| 	return fmt.Sprintf("{deltabits: %08x, findstate:%d outbits:%d}", s.deltaNbBits, s.deltaFindState, s.outBits)
 | |
| }
 | |
| 
 | |
| // Histogram allows to populate the histogram and skip that step in the compression,
 | |
| // It otherwise allows to inspect the histogram when compression is done.
 | |
| // To indicate that you have populated the histogram call HistogramFinished
 | |
| // with the value of the highest populated symbol, as well as the number of entries
 | |
| // in the most populated entry. These are accepted at face value.
 | |
| // The returned slice will always be length 256.
 | |
| func (s *fseEncoder) Histogram() []uint32 {
 | |
| 	return s.count[:]
 | |
| }
 | |
| 
 | |
| // HistogramFinished can be called to indicate that the histogram has been populated.
 | |
| // maxSymbol is the index of the highest set symbol of the next data segment.
 | |
| // maxCount is the number of entries in the most populated entry.
 | |
| // These are accepted at face value.
 | |
| func (s *fseEncoder) HistogramFinished(maxSymbol uint8, maxCount int) {
 | |
| 	s.maxCount = maxCount
 | |
| 	s.symbolLen = uint16(maxSymbol) + 1
 | |
| 	s.clearCount = maxCount != 0
 | |
| }
 | |
| 
 | |
| // prepare will prepare and allocate scratch tables used for both compression and decompression.
 | |
| func (s *fseEncoder) prepare() (*fseEncoder, error) {
 | |
| 	if s == nil {
 | |
| 		s = &fseEncoder{}
 | |
| 	}
 | |
| 	s.useRLE = false
 | |
| 	if s.clearCount && s.maxCount == 0 {
 | |
| 		for i := range s.count {
 | |
| 			s.count[i] = 0
 | |
| 		}
 | |
| 		s.clearCount = false
 | |
| 	}
 | |
| 	return s, nil
 | |
| }
 | |
| 
 | |
| // allocCtable will allocate tables needed for compression.
 | |
| // If existing tables a re big enough, they are simply re-used.
 | |
| func (s *fseEncoder) allocCtable() {
 | |
| 	tableSize := 1 << s.actualTableLog
 | |
| 	// get tableSymbol that is big enough.
 | |
| 	if cap(s.ct.tableSymbol) < tableSize {
 | |
| 		s.ct.tableSymbol = make([]byte, tableSize)
 | |
| 	}
 | |
| 	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
 | |
| 
 | |
| 	ctSize := tableSize
 | |
| 	if cap(s.ct.stateTable) < ctSize {
 | |
| 		s.ct.stateTable = make([]uint16, ctSize)
 | |
| 	}
 | |
| 	s.ct.stateTable = s.ct.stateTable[:ctSize]
 | |
| 
 | |
| 	if cap(s.ct.symbolTT) < 256 {
 | |
| 		s.ct.symbolTT = make([]symbolTransform, 256)
 | |
| 	}
 | |
| 	s.ct.symbolTT = s.ct.symbolTT[:256]
 | |
| }
 | |
| 
 | |
| // buildCTable will populate the compression table so it is ready to be used.
 | |
| func (s *fseEncoder) buildCTable() error {
 | |
| 	tableSize := uint32(1 << s.actualTableLog)
 | |
| 	highThreshold := tableSize - 1
 | |
| 	var cumul [256]int16
 | |
| 
 | |
| 	s.allocCtable()
 | |
| 	tableSymbol := s.ct.tableSymbol[:tableSize]
 | |
| 	// symbol start positions
 | |
| 	{
 | |
| 		cumul[0] = 0
 | |
| 		for ui, v := range s.norm[:s.symbolLen-1] {
 | |
| 			u := byte(ui) // one less than reference
 | |
| 			if v == -1 {
 | |
| 				// Low proba symbol
 | |
| 				cumul[u+1] = cumul[u] + 1
 | |
| 				tableSymbol[highThreshold] = u
 | |
| 				highThreshold--
 | |
| 			} else {
 | |
| 				cumul[u+1] = cumul[u] + v
 | |
| 			}
 | |
| 		}
 | |
| 		// Encode last symbol separately to avoid overflowing u
 | |
| 		u := int(s.symbolLen - 1)
 | |
| 		v := s.norm[s.symbolLen-1]
 | |
| 		if v == -1 {
 | |
| 			// Low proba symbol
 | |
| 			cumul[u+1] = cumul[u] + 1
 | |
| 			tableSymbol[highThreshold] = byte(u)
 | |
| 			highThreshold--
 | |
| 		} else {
 | |
| 			cumul[u+1] = cumul[u] + v
 | |
| 		}
 | |
| 		if uint32(cumul[s.symbolLen]) != tableSize {
 | |
| 			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
 | |
| 		}
 | |
| 		cumul[s.symbolLen] = int16(tableSize) + 1
 | |
| 	}
 | |
| 	// Spread symbols
 | |
| 	s.zeroBits = false
 | |
| 	{
 | |
| 		step := tableStep(tableSize)
 | |
| 		tableMask := tableSize - 1
 | |
| 		var position uint32
 | |
| 		// if any symbol > largeLimit, we may have 0 bits output.
 | |
| 		largeLimit := int16(1 << (s.actualTableLog - 1))
 | |
| 		for ui, v := range s.norm[:s.symbolLen] {
 | |
| 			symbol := byte(ui)
 | |
| 			if v > largeLimit {
 | |
| 				s.zeroBits = true
 | |
| 			}
 | |
| 			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
 | |
| 				tableSymbol[position] = symbol
 | |
| 				position = (position + step) & tableMask
 | |
| 				for position > highThreshold {
 | |
| 					position = (position + step) & tableMask
 | |
| 				} /* Low proba area */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Check if we have gone through all positions
 | |
| 		if position != 0 {
 | |
| 			return errors.New("position!=0")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build table
 | |
| 	table := s.ct.stateTable
 | |
| 	{
 | |
| 		tsi := int(tableSize)
 | |
| 		for u, v := range tableSymbol {
 | |
| 			// TableU16 : sorted by symbol order; gives next state value
 | |
| 			table[cumul[v]] = uint16(tsi + u)
 | |
| 			cumul[v]++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build Symbol Transformation Table
 | |
| 	{
 | |
| 		total := int16(0)
 | |
| 		symbolTT := s.ct.symbolTT[:s.symbolLen]
 | |
| 		tableLog := s.actualTableLog
 | |
| 		tl := (uint32(tableLog) << 16) - (1 << tableLog)
 | |
| 		for i, v := range s.norm[:s.symbolLen] {
 | |
| 			switch v {
 | |
| 			case 0:
 | |
| 			case -1, 1:
 | |
| 				symbolTT[i].deltaNbBits = tl
 | |
| 				symbolTT[i].deltaFindState = total - 1
 | |
| 				total++
 | |
| 			default:
 | |
| 				maxBitsOut := uint32(tableLog) - highBit(uint32(v-1))
 | |
| 				minStatePlus := uint32(v) << maxBitsOut
 | |
| 				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
 | |
| 				symbolTT[i].deltaFindState = total - v
 | |
| 				total += v
 | |
| 			}
 | |
| 		}
 | |
| 		if total != int16(tableSize) {
 | |
| 			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
 | |
| 
 | |
| func (s *fseEncoder) setRLE(val byte) {
 | |
| 	s.allocCtable()
 | |
| 	s.actualTableLog = 0
 | |
| 	s.ct.stateTable = s.ct.stateTable[:1]
 | |
| 	s.ct.symbolTT[val] = symbolTransform{
 | |
| 		deltaFindState: 0,
 | |
| 		deltaNbBits:    0,
 | |
| 	}
 | |
| 	if debug {
 | |
| 		println("setRLE: val", val, "symbolTT", s.ct.symbolTT[val])
 | |
| 	}
 | |
| 	s.rleVal = val
 | |
| 	s.useRLE = true
 | |
| }
 | |
| 
 | |
| // setBits will set output bits for the transform.
 | |
| // if nil is provided, the number of bits is equal to the index.
 | |
| func (s *fseEncoder) setBits(transform []byte) {
 | |
| 	if s.reUsed || s.preDefined {
 | |
| 		return
 | |
| 	}
 | |
| 	if s.useRLE {
 | |
| 		if transform == nil {
 | |
| 			s.ct.symbolTT[s.rleVal].outBits = s.rleVal
 | |
| 			s.maxBits = s.rleVal
 | |
| 			return
 | |
| 		}
 | |
| 		s.maxBits = transform[s.rleVal]
 | |
| 		s.ct.symbolTT[s.rleVal].outBits = s.maxBits
 | |
| 		return
 | |
| 	}
 | |
| 	if transform == nil {
 | |
| 		for i := range s.ct.symbolTT[:s.symbolLen] {
 | |
| 			s.ct.symbolTT[i].outBits = uint8(i)
 | |
| 		}
 | |
| 		s.maxBits = uint8(s.symbolLen - 1)
 | |
| 		return
 | |
| 	}
 | |
| 	s.maxBits = 0
 | |
| 	for i, v := range transform[:s.symbolLen] {
 | |
| 		s.ct.symbolTT[i].outBits = v
 | |
| 		if v > s.maxBits {
 | |
| 			// We could assume bits always going up, but we play safe.
 | |
| 			s.maxBits = v
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // normalizeCount will normalize the count of the symbols so
 | |
| // the total is equal to the table size.
 | |
| // If successful, compression tables will also be made ready.
 | |
| func (s *fseEncoder) normalizeCount(length int) error {
 | |
| 	if s.reUsed {
 | |
| 		return nil
 | |
| 	}
 | |
| 	s.optimalTableLog(length)
 | |
| 	var (
 | |
| 		tableLog          = s.actualTableLog
 | |
| 		scale             = 62 - uint64(tableLog)
 | |
| 		step              = (1 << 62) / uint64(length)
 | |
| 		vStep             = uint64(1) << (scale - 20)
 | |
| 		stillToDistribute = int16(1 << tableLog)
 | |
| 		largest           int
 | |
| 		largestP          int16
 | |
| 		lowThreshold      = (uint32)(length >> tableLog)
 | |
| 	)
 | |
| 	if s.maxCount == length {
 | |
| 		s.useRLE = true
 | |
| 		return nil
 | |
| 	}
 | |
| 	s.useRLE = false
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		// already handled
 | |
| 		// if (count[s] == s.length) return 0;   /* rle special case */
 | |
| 
 | |
| 		if cnt == 0 {
 | |
| 			s.norm[i] = 0
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowThreshold {
 | |
| 			s.norm[i] = -1
 | |
| 			stillToDistribute--
 | |
| 		} else {
 | |
| 			proba := (int16)((uint64(cnt) * step) >> scale)
 | |
| 			if proba < 8 {
 | |
| 				restToBeat := vStep * uint64(rtbTable[proba])
 | |
| 				v := uint64(cnt)*step - (uint64(proba) << scale)
 | |
| 				if v > restToBeat {
 | |
| 					proba++
 | |
| 				}
 | |
| 			}
 | |
| 			if proba > largestP {
 | |
| 				largestP = proba
 | |
| 				largest = i
 | |
| 			}
 | |
| 			s.norm[i] = proba
 | |
| 			stillToDistribute -= proba
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if -stillToDistribute >= (s.norm[largest] >> 1) {
 | |
| 		// corner case, need another normalization method
 | |
| 		err := s.normalizeCount2(length)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		if debugAsserts {
 | |
| 			err = s.validateNorm()
 | |
| 			if err != nil {
 | |
| 				return err
 | |
| 			}
 | |
| 		}
 | |
| 		return s.buildCTable()
 | |
| 	}
 | |
| 	s.norm[largest] += stillToDistribute
 | |
| 	if debugAsserts {
 | |
| 		err := s.validateNorm()
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 	return s.buildCTable()
 | |
| }
 | |
| 
 | |
| // Secondary normalization method.
 | |
| // To be used when primary method fails.
 | |
| func (s *fseEncoder) normalizeCount2(length int) error {
 | |
| 	const notYetAssigned = -2
 | |
| 	var (
 | |
| 		distributed  uint32
 | |
| 		total        = uint32(length)
 | |
| 		tableLog     = s.actualTableLog
 | |
| 		lowThreshold = total >> tableLog
 | |
| 		lowOne       = (total * 3) >> (tableLog + 1)
 | |
| 	)
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		if cnt == 0 {
 | |
| 			s.norm[i] = 0
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowThreshold {
 | |
| 			s.norm[i] = -1
 | |
| 			distributed++
 | |
| 			total -= cnt
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowOne {
 | |
| 			s.norm[i] = 1
 | |
| 			distributed++
 | |
| 			total -= cnt
 | |
| 			continue
 | |
| 		}
 | |
| 		s.norm[i] = notYetAssigned
 | |
| 	}
 | |
| 	toDistribute := (1 << tableLog) - distributed
 | |
| 
 | |
| 	if (total / toDistribute) > lowOne {
 | |
| 		// risk of rounding to zero
 | |
| 		lowOne = (total * 3) / (toDistribute * 2)
 | |
| 		for i, cnt := range s.count[:s.symbolLen] {
 | |
| 			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
 | |
| 				s.norm[i] = 1
 | |
| 				distributed++
 | |
| 				total -= cnt
 | |
| 				continue
 | |
| 			}
 | |
| 		}
 | |
| 		toDistribute = (1 << tableLog) - distributed
 | |
| 	}
 | |
| 	if distributed == uint32(s.symbolLen)+1 {
 | |
| 		// all values are pretty poor;
 | |
| 		//   probably incompressible data (should have already been detected);
 | |
| 		//   find max, then give all remaining points to max
 | |
| 		var maxV int
 | |
| 		var maxC uint32
 | |
| 		for i, cnt := range s.count[:s.symbolLen] {
 | |
| 			if cnt > maxC {
 | |
| 				maxV = i
 | |
| 				maxC = cnt
 | |
| 			}
 | |
| 		}
 | |
| 		s.norm[maxV] += int16(toDistribute)
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	if total == 0 {
 | |
| 		// all of the symbols were low enough for the lowOne or lowThreshold
 | |
| 		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
 | |
| 			if s.norm[i] > 0 {
 | |
| 				toDistribute--
 | |
| 				s.norm[i]++
 | |
| 			}
 | |
| 		}
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	var (
 | |
| 		vStepLog = 62 - uint64(tableLog)
 | |
| 		mid      = uint64((1 << (vStepLog - 1)) - 1)
 | |
| 		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
 | |
| 		tmpTotal = mid
 | |
| 	)
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		if s.norm[i] == notYetAssigned {
 | |
| 			var (
 | |
| 				end    = tmpTotal + uint64(cnt)*rStep
 | |
| 				sStart = uint32(tmpTotal >> vStepLog)
 | |
| 				sEnd   = uint32(end >> vStepLog)
 | |
| 				weight = sEnd - sStart
 | |
| 			)
 | |
| 			if weight < 1 {
 | |
| 				return errors.New("weight < 1")
 | |
| 			}
 | |
| 			s.norm[i] = int16(weight)
 | |
| 			tmpTotal = end
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
 | |
| func (s *fseEncoder) optimalTableLog(length int) {
 | |
| 	tableLog := uint8(maxEncTableLog)
 | |
| 	minBitsSrc := highBit(uint32(length)) + 1
 | |
| 	minBitsSymbols := highBit(uint32(s.symbolLen-1)) + 2
 | |
| 	minBits := uint8(minBitsSymbols)
 | |
| 	if minBitsSrc < minBitsSymbols {
 | |
| 		minBits = uint8(minBitsSrc)
 | |
| 	}
 | |
| 
 | |
| 	maxBitsSrc := uint8(highBit(uint32(length-1))) - 2
 | |
| 	if maxBitsSrc < tableLog {
 | |
| 		// Accuracy can be reduced
 | |
| 		tableLog = maxBitsSrc
 | |
| 	}
 | |
| 	if minBits > tableLog {
 | |
| 		tableLog = minBits
 | |
| 	}
 | |
| 	// Need a minimum to safely represent all symbol values
 | |
| 	if tableLog < minEncTablelog {
 | |
| 		tableLog = minEncTablelog
 | |
| 	}
 | |
| 	if tableLog > maxEncTableLog {
 | |
| 		tableLog = maxEncTableLog
 | |
| 	}
 | |
| 	s.actualTableLog = tableLog
 | |
| }
 | |
| 
 | |
| // validateNorm validates the normalized histogram table.
 | |
| func (s *fseEncoder) validateNorm() (err error) {
 | |
| 	var total int
 | |
| 	for _, v := range s.norm[:s.symbolLen] {
 | |
| 		if v >= 0 {
 | |
| 			total += int(v)
 | |
| 		} else {
 | |
| 			total -= int(v)
 | |
| 		}
 | |
| 	}
 | |
| 	defer func() {
 | |
| 		if err == nil {
 | |
| 			return
 | |
| 		}
 | |
| 		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
 | |
| 		for i, v := range s.norm[:s.symbolLen] {
 | |
| 			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
 | |
| 		}
 | |
| 	}()
 | |
| 	if total != (1 << s.actualTableLog) {
 | |
| 		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
 | |
| 	}
 | |
| 	for i, v := range s.count[s.symbolLen:] {
 | |
| 		if v != 0 {
 | |
| 			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // writeCount will write the normalized histogram count to header.
 | |
| // This is read back by readNCount.
 | |
| func (s *fseEncoder) writeCount(out []byte) ([]byte, error) {
 | |
| 	if s.useRLE {
 | |
| 		return append(out, s.rleVal), nil
 | |
| 	}
 | |
| 	if s.preDefined || s.reUsed {
 | |
| 		// Never write predefined.
 | |
| 		return out, nil
 | |
| 	}
 | |
| 
 | |
| 	var (
 | |
| 		tableLog  = s.actualTableLog
 | |
| 		tableSize = 1 << tableLog
 | |
| 		previous0 bool
 | |
| 		charnum   uint16
 | |
| 
 | |
| 		// maximum header size plus 2 extra bytes for final output if bitCount == 0.
 | |
| 		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 + 2
 | |
| 
 | |
| 		// Write Table Size
 | |
| 		bitStream = uint32(tableLog - minEncTablelog)
 | |
| 		bitCount  = uint(4)
 | |
| 		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
 | |
| 		threshold = int16(tableSize)
 | |
| 		nbBits    = uint(tableLog + 1)
 | |
| 		outP      = len(out)
 | |
| 	)
 | |
| 	if cap(out) < outP+maxHeaderSize {
 | |
| 		out = append(out, make([]byte, maxHeaderSize*3)...)
 | |
| 		out = out[:len(out)-maxHeaderSize*3]
 | |
| 	}
 | |
| 	out = out[:outP+maxHeaderSize]
 | |
| 
 | |
| 	// stops at 1
 | |
| 	for remaining > 1 {
 | |
| 		if previous0 {
 | |
| 			start := charnum
 | |
| 			for s.norm[charnum] == 0 {
 | |
| 				charnum++
 | |
| 			}
 | |
| 			for charnum >= start+24 {
 | |
| 				start += 24
 | |
| 				bitStream += uint32(0xFFFF) << bitCount
 | |
| 				out[outP] = byte(bitStream)
 | |
| 				out[outP+1] = byte(bitStream >> 8)
 | |
| 				outP += 2
 | |
| 				bitStream >>= 16
 | |
| 			}
 | |
| 			for charnum >= start+3 {
 | |
| 				start += 3
 | |
| 				bitStream += 3 << bitCount
 | |
| 				bitCount += 2
 | |
| 			}
 | |
| 			bitStream += uint32(charnum-start) << bitCount
 | |
| 			bitCount += 2
 | |
| 			if bitCount > 16 {
 | |
| 				out[outP] = byte(bitStream)
 | |
| 				out[outP+1] = byte(bitStream >> 8)
 | |
| 				outP += 2
 | |
| 				bitStream >>= 16
 | |
| 				bitCount -= 16
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		count := s.norm[charnum]
 | |
| 		charnum++
 | |
| 		max := (2*threshold - 1) - remaining
 | |
| 		if count < 0 {
 | |
| 			remaining += count
 | |
| 		} else {
 | |
| 			remaining -= count
 | |
| 		}
 | |
| 		count++ // +1 for extra accuracy
 | |
| 		if count >= threshold {
 | |
| 			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
 | |
| 		}
 | |
| 		bitStream += uint32(count) << bitCount
 | |
| 		bitCount += nbBits
 | |
| 		if count < max {
 | |
| 			bitCount--
 | |
| 		}
 | |
| 
 | |
| 		previous0 = count == 1
 | |
| 		if remaining < 1 {
 | |
| 			return nil, errors.New("internal error: remaining < 1")
 | |
| 		}
 | |
| 		for remaining < threshold {
 | |
| 			nbBits--
 | |
| 			threshold >>= 1
 | |
| 		}
 | |
| 
 | |
| 		if bitCount > 16 {
 | |
| 			out[outP] = byte(bitStream)
 | |
| 			out[outP+1] = byte(bitStream >> 8)
 | |
| 			outP += 2
 | |
| 			bitStream >>= 16
 | |
| 			bitCount -= 16
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if outP+2 > len(out) {
 | |
| 		return nil, fmt.Errorf("internal error: %d > %d, maxheader: %d, sl: %d, tl: %d, normcount: %v", outP+2, len(out), maxHeaderSize, s.symbolLen, int(tableLog), s.norm[:s.symbolLen])
 | |
| 	}
 | |
| 	out[outP] = byte(bitStream)
 | |
| 	out[outP+1] = byte(bitStream >> 8)
 | |
| 	outP += int((bitCount + 7) / 8)
 | |
| 
 | |
| 	if charnum > s.symbolLen {
 | |
| 		return nil, errors.New("internal error: charnum > s.symbolLen")
 | |
| 	}
 | |
| 	return out[:outP], nil
 | |
| }
 | |
| 
 | |
| // Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
 | |
| // note 1 : assume symbolValue is valid (<= maxSymbolValue)
 | |
| // note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits *
 | |
| func (s *fseEncoder) bitCost(symbolValue uint8, accuracyLog uint32) uint32 {
 | |
| 	minNbBits := s.ct.symbolTT[symbolValue].deltaNbBits >> 16
 | |
| 	threshold := (minNbBits + 1) << 16
 | |
| 	if debugAsserts {
 | |
| 		if !(s.actualTableLog < 16) {
 | |
| 			panic("!s.actualTableLog < 16")
 | |
| 		}
 | |
| 		// ensure enough room for renormalization double shift
 | |
| 		if !(uint8(accuracyLog) < 31-s.actualTableLog) {
 | |
| 			panic("!uint8(accuracyLog) < 31-s.actualTableLog")
 | |
| 		}
 | |
| 	}
 | |
| 	tableSize := uint32(1) << s.actualTableLog
 | |
| 	deltaFromThreshold := threshold - (s.ct.symbolTT[symbolValue].deltaNbBits + tableSize)
 | |
| 	// linear interpolation (very approximate)
 | |
| 	normalizedDeltaFromThreshold := (deltaFromThreshold << accuracyLog) >> s.actualTableLog
 | |
| 	bitMultiplier := uint32(1) << accuracyLog
 | |
| 	if debugAsserts {
 | |
| 		if s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold {
 | |
| 			panic("s.ct.symbolTT[symbolValue].deltaNbBits+tableSize > threshold")
 | |
| 		}
 | |
| 		if normalizedDeltaFromThreshold > bitMultiplier {
 | |
| 			panic("normalizedDeltaFromThreshold > bitMultiplier")
 | |
| 		}
 | |
| 	}
 | |
| 	return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold
 | |
| }
 | |
| 
 | |
| // Returns the cost in bits of encoding the distribution in count using ctable.
 | |
| // Histogram should only be up to the last non-zero symbol.
 | |
| // Returns an -1 if ctable cannot represent all the symbols in count.
 | |
| func (s *fseEncoder) approxSize(hist []uint32) uint32 {
 | |
| 	if int(s.symbolLen) < len(hist) {
 | |
| 		// More symbols than we have.
 | |
| 		return math.MaxUint32
 | |
| 	}
 | |
| 	if s.useRLE {
 | |
| 		// We will never reuse RLE encoders.
 | |
| 		return math.MaxUint32
 | |
| 	}
 | |
| 	const kAccuracyLog = 8
 | |
| 	badCost := (uint32(s.actualTableLog) + 1) << kAccuracyLog
 | |
| 	var cost uint32
 | |
| 	for i, v := range hist {
 | |
| 		if v == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if s.norm[i] == 0 {
 | |
| 			return math.MaxUint32
 | |
| 		}
 | |
| 		bitCost := s.bitCost(uint8(i), kAccuracyLog)
 | |
| 		if bitCost > badCost {
 | |
| 			return math.MaxUint32
 | |
| 		}
 | |
| 		cost += v * bitCost
 | |
| 	}
 | |
| 	return cost >> kAccuracyLog
 | |
| }
 | |
| 
 | |
| // maxHeaderSize returns the maximum header size in bits.
 | |
| // This is not exact size, but we want a penalty for new tables anyway.
 | |
| func (s *fseEncoder) maxHeaderSize() uint32 {
 | |
| 	if s.preDefined {
 | |
| 		return 0
 | |
| 	}
 | |
| 	if s.useRLE {
 | |
| 		return 8
 | |
| 	}
 | |
| 	return (((uint32(s.symbolLen) * uint32(s.actualTableLog)) >> 3) + 3) * 8
 | |
| }
 | |
| 
 | |
| // cState contains the compression state of a stream.
 | |
| type cState struct {
 | |
| 	bw         *bitWriter
 | |
| 	stateTable []uint16
 | |
| 	state      uint16
 | |
| }
 | |
| 
 | |
| // init will initialize the compression state to the first symbol of the stream.
 | |
| func (c *cState) init(bw *bitWriter, ct *cTable, first symbolTransform) {
 | |
| 	c.bw = bw
 | |
| 	c.stateTable = ct.stateTable
 | |
| 	if len(c.stateTable) == 1 {
 | |
| 		// RLE
 | |
| 		c.stateTable[0] = uint16(0)
 | |
| 		c.state = 0
 | |
| 		return
 | |
| 	}
 | |
| 	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
 | |
| 	im := int32((nbBitsOut << 16) - first.deltaNbBits)
 | |
| 	lu := (im >> nbBitsOut) + int32(first.deltaFindState)
 | |
| 	c.state = c.stateTable[lu]
 | |
| }
 | |
| 
 | |
| // encode the output symbol provided and write it to the bitstream.
 | |
| func (c *cState) encode(symbolTT symbolTransform) {
 | |
| 	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
 | |
| 	dstState := int32(c.state>>(nbBitsOut&15)) + int32(symbolTT.deltaFindState)
 | |
| 	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
 | |
| 	c.state = c.stateTable[dstState]
 | |
| }
 | |
| 
 | |
| // flush will write the tablelog to the output and flush the remaining full bytes.
 | |
| func (c *cState) flush(tableLog uint8) {
 | |
| 	c.bw.flush32()
 | |
| 	c.bw.addBits16NC(c.state, tableLog)
 | |
| }
 |