231 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // +build !appengine,!gccgo
 | |
| 
 | |
| // AMD64-specific hardware-assisted CRC32 algorithms. See crc32.go for a
 | |
| // description of the interface that each architecture-specific file
 | |
| // implements.
 | |
| 
 | |
| package crc32
 | |
| 
 | |
| import "unsafe"
 | |
| 
 | |
| // This file contains the code to call the SSE 4.2 version of the Castagnoli
 | |
| // and IEEE CRC.
 | |
| 
 | |
| // haveSSE41/haveSSE42/haveCLMUL are defined in crc_amd64.s and use
 | |
| // CPUID to test for SSE 4.1, 4.2 and CLMUL support.
 | |
| func haveSSE41() bool
 | |
| func haveSSE42() bool
 | |
| func haveCLMUL() bool
 | |
| 
 | |
| // castagnoliSSE42 is defined in crc32_amd64.s and uses the SSE4.2 CRC32
 | |
| // instruction.
 | |
| //go:noescape
 | |
| func castagnoliSSE42(crc uint32, p []byte) uint32
 | |
| 
 | |
| // castagnoliSSE42Triple is defined in crc32_amd64.s and uses the SSE4.2 CRC32
 | |
| // instruction.
 | |
| //go:noescape
 | |
| func castagnoliSSE42Triple(
 | |
| 	crcA, crcB, crcC uint32,
 | |
| 	a, b, c []byte,
 | |
| 	rounds uint32,
 | |
| ) (retA uint32, retB uint32, retC uint32)
 | |
| 
 | |
| // ieeeCLMUL is defined in crc_amd64.s and uses the PCLMULQDQ
 | |
| // instruction as well as SSE 4.1.
 | |
| //go:noescape
 | |
| func ieeeCLMUL(crc uint32, p []byte) uint32
 | |
| 
 | |
| var sse42 = haveSSE42()
 | |
| var useFastIEEE = haveCLMUL() && haveSSE41()
 | |
| 
 | |
| const castagnoliK1 = 168
 | |
| const castagnoliK2 = 1344
 | |
| 
 | |
| type sse42Table [4]Table
 | |
| 
 | |
| var castagnoliSSE42TableK1 *sse42Table
 | |
| var castagnoliSSE42TableK2 *sse42Table
 | |
| 
 | |
| func archAvailableCastagnoli() bool {
 | |
| 	return sse42
 | |
| }
 | |
| 
 | |
| func archInitCastagnoli() {
 | |
| 	if !sse42 {
 | |
| 		panic("arch-specific Castagnoli not available")
 | |
| 	}
 | |
| 	castagnoliSSE42TableK1 = new(sse42Table)
 | |
| 	castagnoliSSE42TableK2 = new(sse42Table)
 | |
| 	// See description in updateCastagnoli.
 | |
| 	//    t[0][i] = CRC(i000, O)
 | |
| 	//    t[1][i] = CRC(0i00, O)
 | |
| 	//    t[2][i] = CRC(00i0, O)
 | |
| 	//    t[3][i] = CRC(000i, O)
 | |
| 	// where O is a sequence of K zeros.
 | |
| 	var tmp [castagnoliK2]byte
 | |
| 	for b := 0; b < 4; b++ {
 | |
| 		for i := 0; i < 256; i++ {
 | |
| 			val := uint32(i) << uint32(b*8)
 | |
| 			castagnoliSSE42TableK1[b][i] = castagnoliSSE42(val, tmp[:castagnoliK1])
 | |
| 			castagnoliSSE42TableK2[b][i] = castagnoliSSE42(val, tmp[:])
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // castagnoliShift computes the CRC32-C of K1 or K2 zeroes (depending on the
 | |
| // table given) with the given initial crc value. This corresponds to
 | |
| // CRC(crc, O) in the description in updateCastagnoli.
 | |
| func castagnoliShift(table *sse42Table, crc uint32) uint32 {
 | |
| 	return table[3][crc>>24] ^
 | |
| 		table[2][(crc>>16)&0xFF] ^
 | |
| 		table[1][(crc>>8)&0xFF] ^
 | |
| 		table[0][crc&0xFF]
 | |
| }
 | |
| 
 | |
| func archUpdateCastagnoli(crc uint32, p []byte) uint32 {
 | |
| 	if !sse42 {
 | |
| 		panic("not available")
 | |
| 	}
 | |
| 
 | |
| 	// This method is inspired from the algorithm in Intel's white paper:
 | |
| 	//    "Fast CRC Computation for iSCSI Polynomial Using CRC32 Instruction"
 | |
| 	// The same strategy of splitting the buffer in three is used but the
 | |
| 	// combining calculation is different; the complete derivation is explained
 | |
| 	// below.
 | |
| 	//
 | |
| 	// -- The basic idea --
 | |
| 	//
 | |
| 	// The CRC32 instruction (available in SSE4.2) can process 8 bytes at a
 | |
| 	// time. In recent Intel architectures the instruction takes 3 cycles;
 | |
| 	// however the processor can pipeline up to three instructions if they
 | |
| 	// don't depend on each other.
 | |
| 	//
 | |
| 	// Roughly this means that we can process three buffers in about the same
 | |
| 	// time we can process one buffer.
 | |
| 	//
 | |
| 	// The idea is then to split the buffer in three, CRC the three pieces
 | |
| 	// separately and then combine the results.
 | |
| 	//
 | |
| 	// Combining the results requires precomputed tables, so we must choose a
 | |
| 	// fixed buffer length to optimize. The longer the length, the faster; but
 | |
| 	// only buffers longer than this length will use the optimization. We choose
 | |
| 	// two cutoffs and compute tables for both:
 | |
| 	//  - one around 512: 168*3=504
 | |
| 	//  - one around 4KB: 1344*3=4032
 | |
| 	//
 | |
| 	// -- The nitty gritty --
 | |
| 	//
 | |
| 	// Let CRC(I, X) be the non-inverted CRC32-C of the sequence X (with
 | |
| 	// initial non-inverted CRC I). This function has the following properties:
 | |
| 	//   (a) CRC(I, AB) = CRC(CRC(I, A), B)
 | |
| 	//   (b) CRC(I, A xor B) = CRC(I, A) xor CRC(0, B)
 | |
| 	//
 | |
| 	// Say we want to compute CRC(I, ABC) where A, B, C are three sequences of
 | |
| 	// K bytes each, where K is a fixed constant. Let O be the sequence of K zero
 | |
| 	// bytes.
 | |
| 	//
 | |
| 	// CRC(I, ABC) = CRC(I, ABO xor C)
 | |
| 	//             = CRC(I, ABO) xor CRC(0, C)
 | |
| 	//             = CRC(CRC(I, AB), O) xor CRC(0, C)
 | |
| 	//             = CRC(CRC(I, AO xor B), O) xor CRC(0, C)
 | |
| 	//             = CRC(CRC(I, AO) xor CRC(0, B), O) xor CRC(0, C)
 | |
| 	//             = CRC(CRC(CRC(I, A), O) xor CRC(0, B), O) xor CRC(0, C)
 | |
| 	//
 | |
| 	// The castagnoliSSE42Triple function can compute CRC(I, A), CRC(0, B),
 | |
| 	// and CRC(0, C) efficiently.  We just need to find a way to quickly compute
 | |
| 	// CRC(uvwx, O) given a 4-byte initial value uvwx. We can precompute these
 | |
| 	// values; since we can't have a 32-bit table, we break it up into four
 | |
| 	// 8-bit tables:
 | |
| 	//
 | |
| 	//    CRC(uvwx, O) = CRC(u000, O) xor
 | |
| 	//                   CRC(0v00, O) xor
 | |
| 	//                   CRC(00w0, O) xor
 | |
| 	//                   CRC(000x, O)
 | |
| 	//
 | |
| 	// We can compute tables corresponding to the four terms for all 8-bit
 | |
| 	// values.
 | |
| 
 | |
| 	crc = ^crc
 | |
| 
 | |
| 	// If a buffer is long enough to use the optimization, process the first few
 | |
| 	// bytes to align the buffer to an 8 byte boundary (if necessary).
 | |
| 	if len(p) >= castagnoliK1*3 {
 | |
| 		delta := int(uintptr(unsafe.Pointer(&p[0])) & 7)
 | |
| 		if delta != 0 {
 | |
| 			delta = 8 - delta
 | |
| 			crc = castagnoliSSE42(crc, p[:delta])
 | |
| 			p = p[delta:]
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Process 3*K2 at a time.
 | |
| 	for len(p) >= castagnoliK2*3 {
 | |
| 		// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
 | |
| 		crcA, crcB, crcC := castagnoliSSE42Triple(
 | |
| 			crc, 0, 0,
 | |
| 			p, p[castagnoliK2:], p[castagnoliK2*2:],
 | |
| 			castagnoliK2/24)
 | |
| 
 | |
| 		// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
 | |
| 		crcAB := castagnoliShift(castagnoliSSE42TableK2, crcA) ^ crcB
 | |
| 		// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
 | |
| 		crc = castagnoliShift(castagnoliSSE42TableK2, crcAB) ^ crcC
 | |
| 		p = p[castagnoliK2*3:]
 | |
| 	}
 | |
| 
 | |
| 	// Process 3*K1 at a time.
 | |
| 	for len(p) >= castagnoliK1*3 {
 | |
| 		// Compute CRC(I, A), CRC(0, B), and CRC(0, C).
 | |
| 		crcA, crcB, crcC := castagnoliSSE42Triple(
 | |
| 			crc, 0, 0,
 | |
| 			p, p[castagnoliK1:], p[castagnoliK1*2:],
 | |
| 			castagnoliK1/24)
 | |
| 
 | |
| 		// CRC(I, AB) = CRC(CRC(I, A), O) xor CRC(0, B)
 | |
| 		crcAB := castagnoliShift(castagnoliSSE42TableK1, crcA) ^ crcB
 | |
| 		// CRC(I, ABC) = CRC(CRC(I, AB), O) xor CRC(0, C)
 | |
| 		crc = castagnoliShift(castagnoliSSE42TableK1, crcAB) ^ crcC
 | |
| 		p = p[castagnoliK1*3:]
 | |
| 	}
 | |
| 
 | |
| 	// Use the simple implementation for what's left.
 | |
| 	crc = castagnoliSSE42(crc, p)
 | |
| 	return ^crc
 | |
| }
 | |
| 
 | |
| func archAvailableIEEE() bool {
 | |
| 	return useFastIEEE
 | |
| }
 | |
| 
 | |
| var archIeeeTable8 *slicing8Table
 | |
| 
 | |
| func archInitIEEE() {
 | |
| 	if !useFastIEEE {
 | |
| 		panic("not available")
 | |
| 	}
 | |
| 	// We still use slicing-by-8 for small buffers.
 | |
| 	archIeeeTable8 = slicingMakeTable(IEEE)
 | |
| }
 | |
| 
 | |
| func archUpdateIEEE(crc uint32, p []byte) uint32 {
 | |
| 	if !useFastIEEE {
 | |
| 		panic("not available")
 | |
| 	}
 | |
| 
 | |
| 	if len(p) >= 64 {
 | |
| 		left := len(p) & 15
 | |
| 		do := len(p) - left
 | |
| 		crc = ^ieeeCLMUL(^crc, p[:do])
 | |
| 		p = p[do:]
 | |
| 	}
 | |
| 	if len(p) == 0 {
 | |
| 		return crc
 | |
| 	}
 | |
| 	return slicingUpdate(crc, archIeeeTable8, p)
 | |
| }
 |