345 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			345 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package flate
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"sort"
 | |
| )
 | |
| 
 | |
| // hcode is a huffman code with a bit code and bit length.
 | |
| type hcode struct {
 | |
| 	code, len uint16
 | |
| }
 | |
| 
 | |
| type huffmanEncoder struct {
 | |
| 	codes     []hcode
 | |
| 	freqcache []literalNode
 | |
| 	bitCount  [17]int32
 | |
| 	lns       byLiteral // stored to avoid repeated allocation in generate
 | |
| 	lfs       byFreq    // stored to avoid repeated allocation in generate
 | |
| }
 | |
| 
 | |
| type literalNode struct {
 | |
| 	literal uint16
 | |
| 	freq    int32
 | |
| }
 | |
| 
 | |
| // A levelInfo describes the state of the constructed tree for a given depth.
 | |
| type levelInfo struct {
 | |
| 	// Our level.  for better printing
 | |
| 	level int32
 | |
| 
 | |
| 	// The frequency of the last node at this level
 | |
| 	lastFreq int32
 | |
| 
 | |
| 	// The frequency of the next character to add to this level
 | |
| 	nextCharFreq int32
 | |
| 
 | |
| 	// The frequency of the next pair (from level below) to add to this level.
 | |
| 	// Only valid if the "needed" value of the next lower level is 0.
 | |
| 	nextPairFreq int32
 | |
| 
 | |
| 	// The number of chains remaining to generate for this level before moving
 | |
| 	// up to the next level
 | |
| 	needed int32
 | |
| }
 | |
| 
 | |
| // set sets the code and length of an hcode.
 | |
| func (h *hcode) set(code uint16, length uint16) {
 | |
| 	h.len = length
 | |
| 	h.code = code
 | |
| }
 | |
| 
 | |
| func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
 | |
| 
 | |
| func newHuffmanEncoder(size int) *huffmanEncoder {
 | |
| 	return &huffmanEncoder{codes: make([]hcode, size)}
 | |
| }
 | |
| 
 | |
| // Generates a HuffmanCode corresponding to the fixed literal table
 | |
| func generateFixedLiteralEncoding() *huffmanEncoder {
 | |
| 	h := newHuffmanEncoder(maxNumLit)
 | |
| 	codes := h.codes
 | |
| 	var ch uint16
 | |
| 	for ch = 0; ch < maxNumLit; ch++ {
 | |
| 		var bits uint16
 | |
| 		var size uint16
 | |
| 		switch {
 | |
| 		case ch < 144:
 | |
| 			// size 8, 000110000  .. 10111111
 | |
| 			bits = ch + 48
 | |
| 			size = 8
 | |
| 			break
 | |
| 		case ch < 256:
 | |
| 			// size 9, 110010000 .. 111111111
 | |
| 			bits = ch + 400 - 144
 | |
| 			size = 9
 | |
| 			break
 | |
| 		case ch < 280:
 | |
| 			// size 7, 0000000 .. 0010111
 | |
| 			bits = ch - 256
 | |
| 			size = 7
 | |
| 			break
 | |
| 		default:
 | |
| 			// size 8, 11000000 .. 11000111
 | |
| 			bits = ch + 192 - 280
 | |
| 			size = 8
 | |
| 		}
 | |
| 		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size}
 | |
| 	}
 | |
| 	return h
 | |
| }
 | |
| 
 | |
| func generateFixedOffsetEncoding() *huffmanEncoder {
 | |
| 	h := newHuffmanEncoder(30)
 | |
| 	codes := h.codes
 | |
| 	for ch := range codes {
 | |
| 		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5}
 | |
| 	}
 | |
| 	return h
 | |
| }
 | |
| 
 | |
| var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
 | |
| var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
 | |
| 
 | |
| func (h *huffmanEncoder) bitLength(freq []int32) int {
 | |
| 	var total int
 | |
| 	for i, f := range freq {
 | |
| 		if f != 0 {
 | |
| 			total += int(f) * int(h.codes[i].len)
 | |
| 		}
 | |
| 	}
 | |
| 	return total
 | |
| }
 | |
| 
 | |
| const maxBitsLimit = 16
 | |
| 
 | |
| // Return the number of literals assigned to each bit size in the Huffman encoding
 | |
| //
 | |
| // This method is only called when list.length >= 3
 | |
| // The cases of 0, 1, and 2 literals are handled by special case code.
 | |
| //
 | |
| // list  An array of the literals with non-zero frequencies
 | |
| //             and their associated frequencies. The array is in order of increasing
 | |
| //             frequency, and has as its last element a special element with frequency
 | |
| //             MaxInt32
 | |
| // maxBits     The maximum number of bits that should be used to encode any literal.
 | |
| //             Must be less than 16.
 | |
| // return      An integer array in which array[i] indicates the number of literals
 | |
| //             that should be encoded in i bits.
 | |
| func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
 | |
| 	if maxBits >= maxBitsLimit {
 | |
| 		panic("flate: maxBits too large")
 | |
| 	}
 | |
| 	n := int32(len(list))
 | |
| 	list = list[0 : n+1]
 | |
| 	list[n] = maxNode()
 | |
| 
 | |
| 	// The tree can't have greater depth than n - 1, no matter what. This
 | |
| 	// saves a little bit of work in some small cases
 | |
| 	if maxBits > n-1 {
 | |
| 		maxBits = n - 1
 | |
| 	}
 | |
| 
 | |
| 	// Create information about each of the levels.
 | |
| 	// A bogus "Level 0" whose sole purpose is so that
 | |
| 	// level1.prev.needed==0.  This makes level1.nextPairFreq
 | |
| 	// be a legitimate value that never gets chosen.
 | |
| 	var levels [maxBitsLimit]levelInfo
 | |
| 	// leafCounts[i] counts the number of literals at the left
 | |
| 	// of ancestors of the rightmost node at level i.
 | |
| 	// leafCounts[i][j] is the number of literals at the left
 | |
| 	// of the level j ancestor.
 | |
| 	var leafCounts [maxBitsLimit][maxBitsLimit]int32
 | |
| 
 | |
| 	for level := int32(1); level <= maxBits; level++ {
 | |
| 		// For every level, the first two items are the first two characters.
 | |
| 		// We initialize the levels as if we had already figured this out.
 | |
| 		levels[level] = levelInfo{
 | |
| 			level:        level,
 | |
| 			lastFreq:     list[1].freq,
 | |
| 			nextCharFreq: list[2].freq,
 | |
| 			nextPairFreq: list[0].freq + list[1].freq,
 | |
| 		}
 | |
| 		leafCounts[level][level] = 2
 | |
| 		if level == 1 {
 | |
| 			levels[level].nextPairFreq = math.MaxInt32
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// We need a total of 2*n - 2 items at top level and have already generated 2.
 | |
| 	levels[maxBits].needed = 2*n - 4
 | |
| 
 | |
| 	level := maxBits
 | |
| 	for {
 | |
| 		l := &levels[level]
 | |
| 		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
 | |
| 			// We've run out of both leafs and pairs.
 | |
| 			// End all calculations for this level.
 | |
| 			// To make sure we never come back to this level or any lower level,
 | |
| 			// set nextPairFreq impossibly large.
 | |
| 			l.needed = 0
 | |
| 			levels[level+1].nextPairFreq = math.MaxInt32
 | |
| 			level++
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		prevFreq := l.lastFreq
 | |
| 		if l.nextCharFreq < l.nextPairFreq {
 | |
| 			// The next item on this row is a leaf node.
 | |
| 			n := leafCounts[level][level] + 1
 | |
| 			l.lastFreq = l.nextCharFreq
 | |
| 			// Lower leafCounts are the same of the previous node.
 | |
| 			leafCounts[level][level] = n
 | |
| 			l.nextCharFreq = list[n].freq
 | |
| 		} else {
 | |
| 			// The next item on this row is a pair from the previous row.
 | |
| 			// nextPairFreq isn't valid until we generate two
 | |
| 			// more values in the level below
 | |
| 			l.lastFreq = l.nextPairFreq
 | |
| 			// Take leaf counts from the lower level, except counts[level] remains the same.
 | |
| 			copy(leafCounts[level][:level], leafCounts[level-1][:level])
 | |
| 			levels[l.level-1].needed = 2
 | |
| 		}
 | |
| 
 | |
| 		if l.needed--; l.needed == 0 {
 | |
| 			// We've done everything we need to do for this level.
 | |
| 			// Continue calculating one level up. Fill in nextPairFreq
 | |
| 			// of that level with the sum of the two nodes we've just calculated on
 | |
| 			// this level.
 | |
| 			if l.level == maxBits {
 | |
| 				// All done!
 | |
| 				break
 | |
| 			}
 | |
| 			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
 | |
| 			level++
 | |
| 		} else {
 | |
| 			// If we stole from below, move down temporarily to replenish it.
 | |
| 			for levels[level-1].needed > 0 {
 | |
| 				level--
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Somethings is wrong if at the end, the top level is null or hasn't used
 | |
| 	// all of the leaves.
 | |
| 	if leafCounts[maxBits][maxBits] != n {
 | |
| 		panic("leafCounts[maxBits][maxBits] != n")
 | |
| 	}
 | |
| 
 | |
| 	bitCount := h.bitCount[:maxBits+1]
 | |
| 	bits := 1
 | |
| 	counts := &leafCounts[maxBits]
 | |
| 	for level := maxBits; level > 0; level-- {
 | |
| 		// chain.leafCount gives the number of literals requiring at least "bits"
 | |
| 		// bits to encode.
 | |
| 		bitCount[bits] = counts[level] - counts[level-1]
 | |
| 		bits++
 | |
| 	}
 | |
| 	return bitCount
 | |
| }
 | |
| 
 | |
| // Look at the leaves and assign them a bit count and an encoding as specified
 | |
| // in RFC 1951 3.2.2
 | |
| func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
 | |
| 	code := uint16(0)
 | |
| 	for n, bits := range bitCount {
 | |
| 		code <<= 1
 | |
| 		if n == 0 || bits == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		// The literals list[len(list)-bits] .. list[len(list)-bits]
 | |
| 		// are encoded using "bits" bits, and get the values
 | |
| 		// code, code + 1, ....  The code values are
 | |
| 		// assigned in literal order (not frequency order).
 | |
| 		chunk := list[len(list)-int(bits):]
 | |
| 
 | |
| 		h.lns.sort(chunk)
 | |
| 		for _, node := range chunk {
 | |
| 			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)}
 | |
| 			code++
 | |
| 		}
 | |
| 		list = list[0 : len(list)-int(bits)]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Update this Huffman Code object to be the minimum code for the specified frequency count.
 | |
| //
 | |
| // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i.
 | |
| // maxBits  The maximum number of bits to use for any literal.
 | |
| func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
 | |
| 	if h.freqcache == nil {
 | |
| 		// Allocate a reusable buffer with the longest possible frequency table.
 | |
| 		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit.
 | |
| 		// The largest of these is maxNumLit, so we allocate for that case.
 | |
| 		h.freqcache = make([]literalNode, maxNumLit+1)
 | |
| 	}
 | |
| 	list := h.freqcache[:len(freq)+1]
 | |
| 	// Number of non-zero literals
 | |
| 	count := 0
 | |
| 	// Set list to be the set of all non-zero literals and their frequencies
 | |
| 	for i, f := range freq {
 | |
| 		if f != 0 {
 | |
| 			list[count] = literalNode{uint16(i), f}
 | |
| 			count++
 | |
| 		} else {
 | |
| 			list[count] = literalNode{}
 | |
| 			h.codes[i].len = 0
 | |
| 		}
 | |
| 	}
 | |
| 	list[len(freq)] = literalNode{}
 | |
| 
 | |
| 	list = list[:count]
 | |
| 	if count <= 2 {
 | |
| 		// Handle the small cases here, because they are awkward for the general case code. With
 | |
| 		// two or fewer literals, everything has bit length 1.
 | |
| 		for i, node := range list {
 | |
| 			// "list" is in order of increasing literal value.
 | |
| 			h.codes[node.literal].set(uint16(i), 1)
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 	h.lfs.sort(list)
 | |
| 
 | |
| 	// Get the number of literals for each bit count
 | |
| 	bitCount := h.bitCounts(list, maxBits)
 | |
| 	// And do the assignment
 | |
| 	h.assignEncodingAndSize(bitCount, list)
 | |
| }
 | |
| 
 | |
| type byLiteral []literalNode
 | |
| 
 | |
| func (s *byLiteral) sort(a []literalNode) {
 | |
| 	*s = byLiteral(a)
 | |
| 	sort.Sort(s)
 | |
| }
 | |
| 
 | |
| func (s byLiteral) Len() int { return len(s) }
 | |
| 
 | |
| func (s byLiteral) Less(i, j int) bool {
 | |
| 	return s[i].literal < s[j].literal
 | |
| }
 | |
| 
 | |
| func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
 | |
| 
 | |
| type byFreq []literalNode
 | |
| 
 | |
| func (s *byFreq) sort(a []literalNode) {
 | |
| 	*s = byFreq(a)
 | |
| 	sort.Sort(s)
 | |
| }
 | |
| 
 | |
| func (s byFreq) Len() int { return len(s) }
 | |
| 
 | |
| func (s byFreq) Less(i, j int) bool {
 | |
| 	if s[i].freq == s[j].freq {
 | |
| 		return s[i].literal < s[j].literal
 | |
| 	}
 | |
| 	return s[i].freq < s[j].freq
 | |
| }
 | |
| 
 | |
| func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
 |