githaven/vendor/github.com/RoaringBitmap/roaring/parallel.go

613 lines
13 KiB
Go
Raw Normal View History

2018-05-19 12:49:46 +00:00
package roaring
import (
"container/heap"
"fmt"
"runtime"
"sync"
)
var defaultWorkerCount = runtime.NumCPU()
type bitmapContainerKey struct {
key uint16
idx int
bitmap *Bitmap
}
type multipleContainers struct {
key uint16
containers []container
idx int
}
type keyedContainer struct {
key uint16
container container
idx int
}
type bitmapContainerHeap []bitmapContainerKey
func (h bitmapContainerHeap) Len() int { return len(h) }
func (h bitmapContainerHeap) Less(i, j int) bool { return h[i].key < h[j].key }
func (h bitmapContainerHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *bitmapContainerHeap) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
*h = append(*h, x.(bitmapContainerKey))
}
func (h *bitmapContainerHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func (h bitmapContainerHeap) Peek() bitmapContainerKey {
return h[0]
}
func (h *bitmapContainerHeap) popIncrementing() (key uint16, container container) {
k := h.Peek()
key = k.key
container = k.bitmap.highlowcontainer.containers[k.idx]
newIdx := k.idx + 1
if newIdx < k.bitmap.highlowcontainer.size() {
k = bitmapContainerKey{
k.bitmap.highlowcontainer.keys[newIdx],
newIdx,
k.bitmap,
}
(*h)[0] = k
heap.Fix(h, 0)
} else {
heap.Pop(h)
}
return
}
func (h *bitmapContainerHeap) Next(containers []container) multipleContainers {
if h.Len() == 0 {
return multipleContainers{}
}
key, container := h.popIncrementing()
containers = append(containers, container)
for h.Len() > 0 && key == h.Peek().key {
_, container = h.popIncrementing()
containers = append(containers, container)
}
return multipleContainers{
key,
containers,
-1,
}
}
func newBitmapContainerHeap(bitmaps ...*Bitmap) bitmapContainerHeap {
// Initialize heap
var h bitmapContainerHeap = make([]bitmapContainerKey, 0, len(bitmaps))
for _, bitmap := range bitmaps {
if !bitmap.IsEmpty() {
key := bitmapContainerKey{
bitmap.highlowcontainer.keys[0],
0,
bitmap,
}
h = append(h, key)
}
}
heap.Init(&h)
return h
}
func repairAfterLazy(c container) container {
switch t := c.(type) {
case *bitmapContainer:
if t.cardinality == invalidCardinality {
t.computeCardinality()
}
if t.getCardinality() <= arrayDefaultMaxSize {
return t.toArrayContainer()
} else if c.(*bitmapContainer).isFull() {
return newRunContainer16Range(0, MaxUint16)
}
}
return c
}
func toBitmapContainer(c container) container {
switch t := c.(type) {
case *arrayContainer:
return t.toBitmapContainer()
case *runContainer16:
if !t.isFull() {
return t.toBitmapContainer()
}
}
return c
}
func appenderRoutine(bitmapChan chan<- *Bitmap, resultChan <-chan keyedContainer, expectedKeysChan <-chan int) {
expectedKeys := -1
appendedKeys := 0
var keys []uint16
var containers []container
2018-05-19 12:49:46 +00:00
for appendedKeys != expectedKeys {
select {
case item := <-resultChan:
if len(keys) <= item.idx {
keys = append(keys, make([]uint16, item.idx-len(keys)+1)...)
containers = append(containers, make([]container, item.idx-len(containers)+1)...)
}
keys[item.idx] = item.key
containers[item.idx] = item.container
appendedKeys++
case msg := <-expectedKeysChan:
expectedKeys = msg
}
}
answer := &Bitmap{
roaringArray{
make([]uint16, 0, expectedKeys),
make([]container, 0, expectedKeys),
make([]bool, 0, expectedKeys),
false,
},
}
for i := range keys {
if containers[i] != nil { // in case a resulting container was empty, see ParAnd function
answer.highlowcontainer.appendContainer(keys[i], containers[i], false)
}
}
bitmapChan <- answer
}
// ParHeapOr computes the union (OR) of all provided bitmaps in parallel,
// where the parameter "parallelism" determines how many workers are to be used
// (if it is set to 0, a default number of workers is chosen)
// ParHeapOr uses a heap to compute the union. For rare cases it might be faster than ParOr
func ParHeapOr(parallelism int, bitmaps ...*Bitmap) *Bitmap {
bitmapCount := len(bitmaps)
if bitmapCount == 0 {
return NewBitmap()
} else if bitmapCount == 1 {
return bitmaps[0].Clone()
}
if parallelism == 0 {
parallelism = defaultWorkerCount
}
h := newBitmapContainerHeap(bitmaps...)
bitmapChan := make(chan *Bitmap)
inputChan := make(chan multipleContainers, 128)
resultChan := make(chan keyedContainer, 32)
expectedKeysChan := make(chan int)
pool := sync.Pool{
New: func() interface{} {
return make([]container, 0, len(bitmaps))
},
}
orFunc := func() {
// Assumes only structs with >=2 containers are passed
for input := range inputChan {
c := toBitmapContainer(input.containers[0]).lazyOR(input.containers[1])
for _, next := range input.containers[2:] {
c = c.lazyIOR(next)
}
c = repairAfterLazy(c)
kx := keyedContainer{
input.key,
c,
input.idx,
}
resultChan <- kx
pool.Put(input.containers[:0])
}
}
go appenderRoutine(bitmapChan, resultChan, expectedKeysChan)
for i := 0; i < parallelism; i++ {
go orFunc()
}
idx := 0
for h.Len() > 0 {
ck := h.Next(pool.Get().([]container))
if len(ck.containers) == 1 {
resultChan <- keyedContainer{
ck.key,
ck.containers[0],
idx,
}
pool.Put(ck.containers[:0])
} else {
ck.idx = idx
inputChan <- ck
}
idx++
}
expectedKeysChan <- idx
bitmap := <-bitmapChan
close(inputChan)
close(resultChan)
close(expectedKeysChan)
return bitmap
}
// ParAnd computes the intersection (AND) of all provided bitmaps in parallel,
// where the parameter "parallelism" determines how many workers are to be used
// (if it is set to 0, a default number of workers is chosen)
func ParAnd(parallelism int, bitmaps ...*Bitmap) *Bitmap {
bitmapCount := len(bitmaps)
if bitmapCount == 0 {
return NewBitmap()
} else if bitmapCount == 1 {
return bitmaps[0].Clone()
}
if parallelism == 0 {
parallelism = defaultWorkerCount
}
h := newBitmapContainerHeap(bitmaps...)
bitmapChan := make(chan *Bitmap)
inputChan := make(chan multipleContainers, 128)
resultChan := make(chan keyedContainer, 32)
expectedKeysChan := make(chan int)
andFunc := func() {
// Assumes only structs with >=2 containers are passed
for input := range inputChan {
c := input.containers[0].and(input.containers[1])
for _, next := range input.containers[2:] {
if c.isEmpty() {
2018-05-19 12:49:46 +00:00
break
}
c = c.iand(next)
}
// Send a nil explicitly if the result of the intersection is an empty container
if c.isEmpty() {
2018-05-19 12:49:46 +00:00
c = nil
}
kx := keyedContainer{
input.key,
c,
input.idx,
}
resultChan <- kx
}
}
go appenderRoutine(bitmapChan, resultChan, expectedKeysChan)
for i := 0; i < parallelism; i++ {
go andFunc()
}
idx := 0
for h.Len() > 0 {
ck := h.Next(make([]container, 0, 4))
if len(ck.containers) == bitmapCount {
ck.idx = idx
inputChan <- ck
idx++
}
}
expectedKeysChan <- idx
bitmap := <-bitmapChan
close(inputChan)
close(resultChan)
close(expectedKeysChan)
return bitmap
}
// ParOr computes the union (OR) of all provided bitmaps in parallel,
// where the parameter "parallelism" determines how many workers are to be used
// (if it is set to 0, a default number of workers is chosen)
func ParOr(parallelism int, bitmaps ...*Bitmap) *Bitmap {
var lKey uint16 = MaxUint16
var hKey uint16
2018-05-19 12:49:46 +00:00
bitmapsFiltered := bitmaps[:0]
for _, b := range bitmaps {
if !b.IsEmpty() {
bitmapsFiltered = append(bitmapsFiltered, b)
}
}
bitmaps = bitmapsFiltered
for _, b := range bitmaps {
lKey = minOfUint16(lKey, b.highlowcontainer.keys[0])
hKey = maxOfUint16(hKey, b.highlowcontainer.keys[b.highlowcontainer.size()-1])
}
if lKey == MaxUint16 && hKey == 0 {
return New()
} else if len(bitmaps) == 1 {
return bitmaps[0]
}
keyRange := int(hKey) - int(lKey) + 1
2018-05-19 12:49:46 +00:00
if keyRange == 1 {
// revert to FastOr. Since the key range is 0
// no container-level aggregation parallelism is achievable
return FastOr(bitmaps...)
}
if parallelism == 0 {
parallelism = defaultWorkerCount
}
var chunkSize int
var chunkCount int
if parallelism*4 > int(keyRange) {
chunkSize = 1
chunkCount = int(keyRange)
} else {
chunkCount = parallelism * 4
chunkSize = (int(keyRange) + chunkCount - 1) / chunkCount
}
if chunkCount*chunkSize < int(keyRange) {
// it's fine to panic to indicate an implementation error
panic(fmt.Sprintf("invariant check failed: chunkCount * chunkSize < keyRange, %d * %d < %d", chunkCount, chunkSize, keyRange))
}
chunks := make([]*roaringArray, chunkCount)
chunkSpecChan := make(chan parChunkSpec, minOfInt(maxOfInt(64, 2*parallelism), int(chunkCount)))
chunkChan := make(chan parChunk, minOfInt(32, int(chunkCount)))
orFunc := func() {
for spec := range chunkSpecChan {
ra := lazyOrOnRange(&bitmaps[0].highlowcontainer, &bitmaps[1].highlowcontainer, spec.start, spec.end)
for _, b := range bitmaps[2:] {
ra = lazyIOrOnRange(ra, &b.highlowcontainer, spec.start, spec.end)
}
for i, c := range ra.containers {
ra.containers[i] = repairAfterLazy(c)
}
chunkChan <- parChunk{ra, spec.idx}
}
}
for i := 0; i < parallelism; i++ {
go orFunc()
}
go func() {
for i := 0; i < chunkCount; i++ {
spec := parChunkSpec{
start: uint16(int(lKey) + i*chunkSize),
end: uint16(minOfInt(int(lKey)+(i+1)*chunkSize-1, int(hKey))),
idx: int(i),
}
chunkSpecChan <- spec
}
}()
chunksRemaining := chunkCount
for chunk := range chunkChan {
chunks[chunk.idx] = chunk.ra
chunksRemaining--
if chunksRemaining == 0 {
break
}
}
close(chunkChan)
close(chunkSpecChan)
containerCount := 0
for _, chunk := range chunks {
containerCount += chunk.size()
}
result := Bitmap{
roaringArray{
containers: make([]container, containerCount),
keys: make([]uint16, containerCount),
needCopyOnWrite: make([]bool, containerCount),
},
}
resultOffset := 0
for _, chunk := range chunks {
copy(result.highlowcontainer.containers[resultOffset:], chunk.containers)
copy(result.highlowcontainer.keys[resultOffset:], chunk.keys)
copy(result.highlowcontainer.needCopyOnWrite[resultOffset:], chunk.needCopyOnWrite)
resultOffset += chunk.size()
}
return &result
}
type parChunkSpec struct {
start uint16
end uint16
idx int
}
type parChunk struct {
ra *roaringArray
idx int
}
func (c parChunk) size() int {
return c.ra.size()
}
func parNaiveStartAt(ra *roaringArray, start uint16, last uint16) int {
for idx, key := range ra.keys {
if key >= start && key <= last {
return idx
} else if key > last {
break
}
}
return ra.size()
}
func lazyOrOnRange(ra1, ra2 *roaringArray, start, last uint16) *roaringArray {
answer := newRoaringArray()
length1 := ra1.size()
length2 := ra2.size()
idx1 := parNaiveStartAt(ra1, start, last)
idx2 := parNaiveStartAt(ra2, start, last)
var key1 uint16
var key2 uint16
if idx1 < length1 && idx2 < length2 {
key1 = ra1.getKeyAtIndex(idx1)
key2 = ra2.getKeyAtIndex(idx2)
for key1 <= last && key2 <= last {
if key1 < key2 {
answer.appendCopy(*ra1, idx1)
idx1++
if idx1 == length1 {
break
}
key1 = ra1.getKeyAtIndex(idx1)
} else if key1 > key2 {
answer.appendCopy(*ra2, idx2)
idx2++
if idx2 == length2 {
break
}
key2 = ra2.getKeyAtIndex(idx2)
} else {
c1 := ra1.getFastContainerAtIndex(idx1, false)
answer.appendContainer(key1, c1.lazyOR(ra2.getContainerAtIndex(idx2)), false)
idx1++
idx2++
if idx1 == length1 || idx2 == length2 {
break
}
key1 = ra1.getKeyAtIndex(idx1)
key2 = ra2.getKeyAtIndex(idx2)
}
}
}
if idx2 < length2 {
key2 = ra2.getKeyAtIndex(idx2)
for key2 <= last {
answer.appendCopy(*ra2, idx2)
idx2++
if idx2 == length2 {
break
}
key2 = ra2.getKeyAtIndex(idx2)
}
}
if idx1 < length1 {
key1 = ra1.getKeyAtIndex(idx1)
for key1 <= last {
answer.appendCopy(*ra1, idx1)
idx1++
if idx1 == length1 {
break
}
key1 = ra1.getKeyAtIndex(idx1)
}
}
return answer
}
func lazyIOrOnRange(ra1, ra2 *roaringArray, start, last uint16) *roaringArray {
length1 := ra1.size()
length2 := ra2.size()
idx1 := 0
idx2 := parNaiveStartAt(ra2, start, last)
var key1 uint16
var key2 uint16
if idx1 < length1 && idx2 < length2 {
key1 = ra1.getKeyAtIndex(idx1)
key2 = ra2.getKeyAtIndex(idx2)
for key1 <= last && key2 <= last {
if key1 < key2 {
idx1++
if idx1 >= length1 {
break
}
key1 = ra1.getKeyAtIndex(idx1)
} else if key1 > key2 {
ra1.insertNewKeyValueAt(idx1, key2, ra2.getContainerAtIndex(idx2))
ra1.needCopyOnWrite[idx1] = true
idx2++
idx1++
length1++
if idx2 >= length2 {
break
}
key2 = ra2.getKeyAtIndex(idx2)
} else {
c1 := ra1.getFastContainerAtIndex(idx1, true)
ra1.containers[idx1] = c1.lazyIOR(ra2.getContainerAtIndex(idx2))
ra1.needCopyOnWrite[idx1] = false
idx1++
idx2++
if idx1 >= length1 || idx2 >= length2 {
break
}
key1 = ra1.getKeyAtIndex(idx1)
key2 = ra2.getKeyAtIndex(idx2)
}
}
}
if idx2 < length2 {
key2 = ra2.getKeyAtIndex(idx2)
for key2 <= last {
ra1.appendCopy(*ra2, idx2)
idx2++
if idx2 >= length2 {
break
}
key2 = ra2.getKeyAtIndex(idx2)
}
}
return ra1
}