forked from Shiloh/githaven
d2ea21d0d8
* use certmagic for more extensible/robust ACME cert handling * accept TOS based on config option Signed-off-by: Andrew Thornton <art27@cantab.net> Co-authored-by: zeripath <art27@cantab.net> Co-authored-by: Lauris BH <lauris@nix.lv>
727 lines
18 KiB
Go
Vendored
727 lines
18 KiB
Go
Vendored
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bpf
|
|
|
|
import "fmt"
|
|
|
|
// An Instruction is one instruction executed by the BPF virtual
|
|
// machine.
|
|
type Instruction interface {
|
|
// Assemble assembles the Instruction into a RawInstruction.
|
|
Assemble() (RawInstruction, error)
|
|
}
|
|
|
|
// A RawInstruction is a raw BPF virtual machine instruction.
|
|
type RawInstruction struct {
|
|
// Operation to execute.
|
|
Op uint16
|
|
// For conditional jump instructions, the number of instructions
|
|
// to skip if the condition is true/false.
|
|
Jt uint8
|
|
Jf uint8
|
|
// Constant parameter. The meaning depends on the Op.
|
|
K uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (ri RawInstruction) Assemble() (RawInstruction, error) { return ri, nil }
|
|
|
|
// Disassemble parses ri into an Instruction and returns it. If ri is
|
|
// not recognized by this package, ri itself is returned.
|
|
func (ri RawInstruction) Disassemble() Instruction {
|
|
switch ri.Op & opMaskCls {
|
|
case opClsLoadA, opClsLoadX:
|
|
reg := Register(ri.Op & opMaskLoadDest)
|
|
sz := 0
|
|
switch ri.Op & opMaskLoadWidth {
|
|
case opLoadWidth4:
|
|
sz = 4
|
|
case opLoadWidth2:
|
|
sz = 2
|
|
case opLoadWidth1:
|
|
sz = 1
|
|
default:
|
|
return ri
|
|
}
|
|
switch ri.Op & opMaskLoadMode {
|
|
case opAddrModeImmediate:
|
|
if sz != 4 {
|
|
return ri
|
|
}
|
|
return LoadConstant{Dst: reg, Val: ri.K}
|
|
case opAddrModeScratch:
|
|
if sz != 4 || ri.K > 15 {
|
|
return ri
|
|
}
|
|
return LoadScratch{Dst: reg, N: int(ri.K)}
|
|
case opAddrModeAbsolute:
|
|
if ri.K > extOffset+0xffffffff {
|
|
return LoadExtension{Num: Extension(-extOffset + ri.K)}
|
|
}
|
|
return LoadAbsolute{Size: sz, Off: ri.K}
|
|
case opAddrModeIndirect:
|
|
return LoadIndirect{Size: sz, Off: ri.K}
|
|
case opAddrModePacketLen:
|
|
if sz != 4 {
|
|
return ri
|
|
}
|
|
return LoadExtension{Num: ExtLen}
|
|
case opAddrModeMemShift:
|
|
return LoadMemShift{Off: ri.K}
|
|
default:
|
|
return ri
|
|
}
|
|
|
|
case opClsStoreA:
|
|
if ri.Op != opClsStoreA || ri.K > 15 {
|
|
return ri
|
|
}
|
|
return StoreScratch{Src: RegA, N: int(ri.K)}
|
|
|
|
case opClsStoreX:
|
|
if ri.Op != opClsStoreX || ri.K > 15 {
|
|
return ri
|
|
}
|
|
return StoreScratch{Src: RegX, N: int(ri.K)}
|
|
|
|
case opClsALU:
|
|
switch op := ALUOp(ri.Op & opMaskOperator); op {
|
|
case ALUOpAdd, ALUOpSub, ALUOpMul, ALUOpDiv, ALUOpOr, ALUOpAnd, ALUOpShiftLeft, ALUOpShiftRight, ALUOpMod, ALUOpXor:
|
|
switch operand := opOperand(ri.Op & opMaskOperand); operand {
|
|
case opOperandX:
|
|
return ALUOpX{Op: op}
|
|
case opOperandConstant:
|
|
return ALUOpConstant{Op: op, Val: ri.K}
|
|
default:
|
|
return ri
|
|
}
|
|
case aluOpNeg:
|
|
return NegateA{}
|
|
default:
|
|
return ri
|
|
}
|
|
|
|
case opClsJump:
|
|
switch op := jumpOp(ri.Op & opMaskOperator); op {
|
|
case opJumpAlways:
|
|
return Jump{Skip: ri.K}
|
|
case opJumpEqual, opJumpGT, opJumpGE, opJumpSet:
|
|
cond, skipTrue, skipFalse := jumpOpToTest(op, ri.Jt, ri.Jf)
|
|
switch operand := opOperand(ri.Op & opMaskOperand); operand {
|
|
case opOperandX:
|
|
return JumpIfX{Cond: cond, SkipTrue: skipTrue, SkipFalse: skipFalse}
|
|
case opOperandConstant:
|
|
return JumpIf{Cond: cond, Val: ri.K, SkipTrue: skipTrue, SkipFalse: skipFalse}
|
|
default:
|
|
return ri
|
|
}
|
|
default:
|
|
return ri
|
|
}
|
|
|
|
case opClsReturn:
|
|
switch ri.Op {
|
|
case opClsReturn | opRetSrcA:
|
|
return RetA{}
|
|
case opClsReturn | opRetSrcConstant:
|
|
return RetConstant{Val: ri.K}
|
|
default:
|
|
return ri
|
|
}
|
|
|
|
case opClsMisc:
|
|
switch ri.Op {
|
|
case opClsMisc | opMiscTAX:
|
|
return TAX{}
|
|
case opClsMisc | opMiscTXA:
|
|
return TXA{}
|
|
default:
|
|
return ri
|
|
}
|
|
|
|
default:
|
|
panic("unreachable") // switch is exhaustive on the bit pattern
|
|
}
|
|
}
|
|
|
|
func jumpOpToTest(op jumpOp, skipTrue uint8, skipFalse uint8) (JumpTest, uint8, uint8) {
|
|
var test JumpTest
|
|
|
|
// Decode "fake" jump conditions that don't appear in machine code
|
|
// Ensures the Assemble -> Disassemble stage recreates the same instructions
|
|
// See https://github.com/golang/go/issues/18470
|
|
if skipTrue == 0 {
|
|
switch op {
|
|
case opJumpEqual:
|
|
test = JumpNotEqual
|
|
case opJumpGT:
|
|
test = JumpLessOrEqual
|
|
case opJumpGE:
|
|
test = JumpLessThan
|
|
case opJumpSet:
|
|
test = JumpBitsNotSet
|
|
}
|
|
|
|
return test, skipFalse, 0
|
|
}
|
|
|
|
switch op {
|
|
case opJumpEqual:
|
|
test = JumpEqual
|
|
case opJumpGT:
|
|
test = JumpGreaterThan
|
|
case opJumpGE:
|
|
test = JumpGreaterOrEqual
|
|
case opJumpSet:
|
|
test = JumpBitsSet
|
|
}
|
|
|
|
return test, skipTrue, skipFalse
|
|
}
|
|
|
|
// LoadConstant loads Val into register Dst.
|
|
type LoadConstant struct {
|
|
Dst Register
|
|
Val uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadConstant) Assemble() (RawInstruction, error) {
|
|
return assembleLoad(a.Dst, 4, opAddrModeImmediate, a.Val)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadConstant) String() string {
|
|
switch a.Dst {
|
|
case RegA:
|
|
return fmt.Sprintf("ld #%d", a.Val)
|
|
case RegX:
|
|
return fmt.Sprintf("ldx #%d", a.Val)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// LoadScratch loads scratch[N] into register Dst.
|
|
type LoadScratch struct {
|
|
Dst Register
|
|
N int // 0-15
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadScratch) Assemble() (RawInstruction, error) {
|
|
if a.N < 0 || a.N > 15 {
|
|
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
|
|
}
|
|
return assembleLoad(a.Dst, 4, opAddrModeScratch, uint32(a.N))
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadScratch) String() string {
|
|
switch a.Dst {
|
|
case RegA:
|
|
return fmt.Sprintf("ld M[%d]", a.N)
|
|
case RegX:
|
|
return fmt.Sprintf("ldx M[%d]", a.N)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// LoadAbsolute loads packet[Off:Off+Size] as an integer value into
|
|
// register A.
|
|
type LoadAbsolute struct {
|
|
Off uint32
|
|
Size int // 1, 2 or 4
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadAbsolute) Assemble() (RawInstruction, error) {
|
|
return assembleLoad(RegA, a.Size, opAddrModeAbsolute, a.Off)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadAbsolute) String() string {
|
|
switch a.Size {
|
|
case 1: // byte
|
|
return fmt.Sprintf("ldb [%d]", a.Off)
|
|
case 2: // half word
|
|
return fmt.Sprintf("ldh [%d]", a.Off)
|
|
case 4: // word
|
|
if a.Off > extOffset+0xffffffff {
|
|
return LoadExtension{Num: Extension(a.Off + 0x1000)}.String()
|
|
}
|
|
return fmt.Sprintf("ld [%d]", a.Off)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// LoadIndirect loads packet[X+Off:X+Off+Size] as an integer value
|
|
// into register A.
|
|
type LoadIndirect struct {
|
|
Off uint32
|
|
Size int // 1, 2 or 4
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadIndirect) Assemble() (RawInstruction, error) {
|
|
return assembleLoad(RegA, a.Size, opAddrModeIndirect, a.Off)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadIndirect) String() string {
|
|
switch a.Size {
|
|
case 1: // byte
|
|
return fmt.Sprintf("ldb [x + %d]", a.Off)
|
|
case 2: // half word
|
|
return fmt.Sprintf("ldh [x + %d]", a.Off)
|
|
case 4: // word
|
|
return fmt.Sprintf("ld [x + %d]", a.Off)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// LoadMemShift multiplies the first 4 bits of the byte at packet[Off]
|
|
// by 4 and stores the result in register X.
|
|
//
|
|
// This instruction is mainly useful to load into X the length of an
|
|
// IPv4 packet header in a single instruction, rather than have to do
|
|
// the arithmetic on the header's first byte by hand.
|
|
type LoadMemShift struct {
|
|
Off uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadMemShift) Assemble() (RawInstruction, error) {
|
|
return assembleLoad(RegX, 1, opAddrModeMemShift, a.Off)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadMemShift) String() string {
|
|
return fmt.Sprintf("ldx 4*([%d]&0xf)", a.Off)
|
|
}
|
|
|
|
// LoadExtension invokes a linux-specific extension and stores the
|
|
// result in register A.
|
|
type LoadExtension struct {
|
|
Num Extension
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a LoadExtension) Assemble() (RawInstruction, error) {
|
|
if a.Num == ExtLen {
|
|
return assembleLoad(RegA, 4, opAddrModePacketLen, 0)
|
|
}
|
|
return assembleLoad(RegA, 4, opAddrModeAbsolute, uint32(extOffset+a.Num))
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a LoadExtension) String() string {
|
|
switch a.Num {
|
|
case ExtLen:
|
|
return "ld #len"
|
|
case ExtProto:
|
|
return "ld #proto"
|
|
case ExtType:
|
|
return "ld #type"
|
|
case ExtPayloadOffset:
|
|
return "ld #poff"
|
|
case ExtInterfaceIndex:
|
|
return "ld #ifidx"
|
|
case ExtNetlinkAttr:
|
|
return "ld #nla"
|
|
case ExtNetlinkAttrNested:
|
|
return "ld #nlan"
|
|
case ExtMark:
|
|
return "ld #mark"
|
|
case ExtQueue:
|
|
return "ld #queue"
|
|
case ExtLinkLayerType:
|
|
return "ld #hatype"
|
|
case ExtRXHash:
|
|
return "ld #rxhash"
|
|
case ExtCPUID:
|
|
return "ld #cpu"
|
|
case ExtVLANTag:
|
|
return "ld #vlan_tci"
|
|
case ExtVLANTagPresent:
|
|
return "ld #vlan_avail"
|
|
case ExtVLANProto:
|
|
return "ld #vlan_tpid"
|
|
case ExtRand:
|
|
return "ld #rand"
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// StoreScratch stores register Src into scratch[N].
|
|
type StoreScratch struct {
|
|
Src Register
|
|
N int // 0-15
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a StoreScratch) Assemble() (RawInstruction, error) {
|
|
if a.N < 0 || a.N > 15 {
|
|
return RawInstruction{}, fmt.Errorf("invalid scratch slot %d", a.N)
|
|
}
|
|
var op uint16
|
|
switch a.Src {
|
|
case RegA:
|
|
op = opClsStoreA
|
|
case RegX:
|
|
op = opClsStoreX
|
|
default:
|
|
return RawInstruction{}, fmt.Errorf("invalid source register %v", a.Src)
|
|
}
|
|
|
|
return RawInstruction{
|
|
Op: op,
|
|
K: uint32(a.N),
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a StoreScratch) String() string {
|
|
switch a.Src {
|
|
case RegA:
|
|
return fmt.Sprintf("st M[%d]", a.N)
|
|
case RegX:
|
|
return fmt.Sprintf("stx M[%d]", a.N)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// ALUOpConstant executes A = A <Op> Val.
|
|
type ALUOpConstant struct {
|
|
Op ALUOp
|
|
Val uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a ALUOpConstant) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsALU | uint16(opOperandConstant) | uint16(a.Op),
|
|
K: a.Val,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a ALUOpConstant) String() string {
|
|
switch a.Op {
|
|
case ALUOpAdd:
|
|
return fmt.Sprintf("add #%d", a.Val)
|
|
case ALUOpSub:
|
|
return fmt.Sprintf("sub #%d", a.Val)
|
|
case ALUOpMul:
|
|
return fmt.Sprintf("mul #%d", a.Val)
|
|
case ALUOpDiv:
|
|
return fmt.Sprintf("div #%d", a.Val)
|
|
case ALUOpMod:
|
|
return fmt.Sprintf("mod #%d", a.Val)
|
|
case ALUOpAnd:
|
|
return fmt.Sprintf("and #%d", a.Val)
|
|
case ALUOpOr:
|
|
return fmt.Sprintf("or #%d", a.Val)
|
|
case ALUOpXor:
|
|
return fmt.Sprintf("xor #%d", a.Val)
|
|
case ALUOpShiftLeft:
|
|
return fmt.Sprintf("lsh #%d", a.Val)
|
|
case ALUOpShiftRight:
|
|
return fmt.Sprintf("rsh #%d", a.Val)
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// ALUOpX executes A = A <Op> X
|
|
type ALUOpX struct {
|
|
Op ALUOp
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a ALUOpX) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsALU | uint16(opOperandX) | uint16(a.Op),
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a ALUOpX) String() string {
|
|
switch a.Op {
|
|
case ALUOpAdd:
|
|
return "add x"
|
|
case ALUOpSub:
|
|
return "sub x"
|
|
case ALUOpMul:
|
|
return "mul x"
|
|
case ALUOpDiv:
|
|
return "div x"
|
|
case ALUOpMod:
|
|
return "mod x"
|
|
case ALUOpAnd:
|
|
return "and x"
|
|
case ALUOpOr:
|
|
return "or x"
|
|
case ALUOpXor:
|
|
return "xor x"
|
|
case ALUOpShiftLeft:
|
|
return "lsh x"
|
|
case ALUOpShiftRight:
|
|
return "rsh x"
|
|
default:
|
|
return fmt.Sprintf("unknown instruction: %#v", a)
|
|
}
|
|
}
|
|
|
|
// NegateA executes A = -A.
|
|
type NegateA struct{}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a NegateA) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsALU | uint16(aluOpNeg),
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a NegateA) String() string {
|
|
return fmt.Sprintf("neg")
|
|
}
|
|
|
|
// Jump skips the following Skip instructions in the program.
|
|
type Jump struct {
|
|
Skip uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a Jump) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsJump | uint16(opJumpAlways),
|
|
K: a.Skip,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a Jump) String() string {
|
|
return fmt.Sprintf("ja %d", a.Skip)
|
|
}
|
|
|
|
// JumpIf skips the following Skip instructions in the program if A
|
|
// <Cond> Val is true.
|
|
type JumpIf struct {
|
|
Cond JumpTest
|
|
Val uint32
|
|
SkipTrue uint8
|
|
SkipFalse uint8
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a JumpIf) Assemble() (RawInstruction, error) {
|
|
return jumpToRaw(a.Cond, opOperandConstant, a.Val, a.SkipTrue, a.SkipFalse)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a JumpIf) String() string {
|
|
return jumpToString(a.Cond, fmt.Sprintf("#%d", a.Val), a.SkipTrue, a.SkipFalse)
|
|
}
|
|
|
|
// JumpIfX skips the following Skip instructions in the program if A
|
|
// <Cond> X is true.
|
|
type JumpIfX struct {
|
|
Cond JumpTest
|
|
SkipTrue uint8
|
|
SkipFalse uint8
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a JumpIfX) Assemble() (RawInstruction, error) {
|
|
return jumpToRaw(a.Cond, opOperandX, 0, a.SkipTrue, a.SkipFalse)
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a JumpIfX) String() string {
|
|
return jumpToString(a.Cond, "x", a.SkipTrue, a.SkipFalse)
|
|
}
|
|
|
|
// jumpToRaw assembles a jump instruction into a RawInstruction
|
|
func jumpToRaw(test JumpTest, operand opOperand, k uint32, skipTrue, skipFalse uint8) (RawInstruction, error) {
|
|
var (
|
|
cond jumpOp
|
|
flip bool
|
|
)
|
|
switch test {
|
|
case JumpEqual:
|
|
cond = opJumpEqual
|
|
case JumpNotEqual:
|
|
cond, flip = opJumpEqual, true
|
|
case JumpGreaterThan:
|
|
cond = opJumpGT
|
|
case JumpLessThan:
|
|
cond, flip = opJumpGE, true
|
|
case JumpGreaterOrEqual:
|
|
cond = opJumpGE
|
|
case JumpLessOrEqual:
|
|
cond, flip = opJumpGT, true
|
|
case JumpBitsSet:
|
|
cond = opJumpSet
|
|
case JumpBitsNotSet:
|
|
cond, flip = opJumpSet, true
|
|
default:
|
|
return RawInstruction{}, fmt.Errorf("unknown JumpTest %v", test)
|
|
}
|
|
jt, jf := skipTrue, skipFalse
|
|
if flip {
|
|
jt, jf = jf, jt
|
|
}
|
|
return RawInstruction{
|
|
Op: opClsJump | uint16(cond) | uint16(operand),
|
|
Jt: jt,
|
|
Jf: jf,
|
|
K: k,
|
|
}, nil
|
|
}
|
|
|
|
// jumpToString converts a jump instruction to assembler notation
|
|
func jumpToString(cond JumpTest, operand string, skipTrue, skipFalse uint8) string {
|
|
switch cond {
|
|
// K == A
|
|
case JumpEqual:
|
|
return conditionalJump(operand, skipTrue, skipFalse, "jeq", "jneq")
|
|
// K != A
|
|
case JumpNotEqual:
|
|
return fmt.Sprintf("jneq %s,%d", operand, skipTrue)
|
|
// K > A
|
|
case JumpGreaterThan:
|
|
return conditionalJump(operand, skipTrue, skipFalse, "jgt", "jle")
|
|
// K < A
|
|
case JumpLessThan:
|
|
return fmt.Sprintf("jlt %s,%d", operand, skipTrue)
|
|
// K >= A
|
|
case JumpGreaterOrEqual:
|
|
return conditionalJump(operand, skipTrue, skipFalse, "jge", "jlt")
|
|
// K <= A
|
|
case JumpLessOrEqual:
|
|
return fmt.Sprintf("jle %s,%d", operand, skipTrue)
|
|
// K & A != 0
|
|
case JumpBitsSet:
|
|
if skipFalse > 0 {
|
|
return fmt.Sprintf("jset %s,%d,%d", operand, skipTrue, skipFalse)
|
|
}
|
|
return fmt.Sprintf("jset %s,%d", operand, skipTrue)
|
|
// K & A == 0, there is no assembler instruction for JumpBitNotSet, use JumpBitSet and invert skips
|
|
case JumpBitsNotSet:
|
|
return jumpToString(JumpBitsSet, operand, skipFalse, skipTrue)
|
|
default:
|
|
return fmt.Sprintf("unknown JumpTest %#v", cond)
|
|
}
|
|
}
|
|
|
|
func conditionalJump(operand string, skipTrue, skipFalse uint8, positiveJump, negativeJump string) string {
|
|
if skipTrue > 0 {
|
|
if skipFalse > 0 {
|
|
return fmt.Sprintf("%s %s,%d,%d", positiveJump, operand, skipTrue, skipFalse)
|
|
}
|
|
return fmt.Sprintf("%s %s,%d", positiveJump, operand, skipTrue)
|
|
}
|
|
return fmt.Sprintf("%s %s,%d", negativeJump, operand, skipFalse)
|
|
}
|
|
|
|
// RetA exits the BPF program, returning the value of register A.
|
|
type RetA struct{}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a RetA) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsReturn | opRetSrcA,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a RetA) String() string {
|
|
return fmt.Sprintf("ret a")
|
|
}
|
|
|
|
// RetConstant exits the BPF program, returning a constant value.
|
|
type RetConstant struct {
|
|
Val uint32
|
|
}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a RetConstant) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsReturn | opRetSrcConstant,
|
|
K: a.Val,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a RetConstant) String() string {
|
|
return fmt.Sprintf("ret #%d", a.Val)
|
|
}
|
|
|
|
// TXA copies the value of register X to register A.
|
|
type TXA struct{}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a TXA) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsMisc | opMiscTXA,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a TXA) String() string {
|
|
return fmt.Sprintf("txa")
|
|
}
|
|
|
|
// TAX copies the value of register A to register X.
|
|
type TAX struct{}
|
|
|
|
// Assemble implements the Instruction Assemble method.
|
|
func (a TAX) Assemble() (RawInstruction, error) {
|
|
return RawInstruction{
|
|
Op: opClsMisc | opMiscTAX,
|
|
}, nil
|
|
}
|
|
|
|
// String returns the instruction in assembler notation.
|
|
func (a TAX) String() string {
|
|
return fmt.Sprintf("tax")
|
|
}
|
|
|
|
func assembleLoad(dst Register, loadSize int, mode uint16, k uint32) (RawInstruction, error) {
|
|
var (
|
|
cls uint16
|
|
sz uint16
|
|
)
|
|
switch dst {
|
|
case RegA:
|
|
cls = opClsLoadA
|
|
case RegX:
|
|
cls = opClsLoadX
|
|
default:
|
|
return RawInstruction{}, fmt.Errorf("invalid target register %v", dst)
|
|
}
|
|
switch loadSize {
|
|
case 1:
|
|
sz = opLoadWidth1
|
|
case 2:
|
|
sz = opLoadWidth2
|
|
case 4:
|
|
sz = opLoadWidth4
|
|
default:
|
|
return RawInstruction{}, fmt.Errorf("invalid load byte length %d", sz)
|
|
}
|
|
return RawInstruction{
|
|
Op: cls | sz | mode,
|
|
K: k,
|
|
}, nil
|
|
}
|