forked from Shiloh/githaven
b6a95a8cb3
* Dropped unused codekit config * Integrated dynamic and static bindata for public * Ignore public bindata * Add a general generate make task * Integrated flexible public assets into web command * Updated vendoring, added all missiong govendor deps * Made the linter happy with the bindata and dynamic code * Moved public bindata definition to modules directory * Ignoring the new bindata path now * Updated to the new public modules import path * Updated public bindata command and drop the new prefix
404 lines
12 KiB
Go
404 lines
12 KiB
Go
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package snappy
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
)
|
|
|
|
// maxOffset limits how far copy back-references can go, the same as the C++
|
|
// code.
|
|
const maxOffset = 1 << 15
|
|
|
|
// emitLiteral writes a literal chunk and returns the number of bytes written.
|
|
func emitLiteral(dst, lit []byte) int {
|
|
i, n := 0, uint(len(lit)-1)
|
|
switch {
|
|
case n < 60:
|
|
dst[0] = uint8(n)<<2 | tagLiteral
|
|
i = 1
|
|
case n < 1<<8:
|
|
dst[0] = 60<<2 | tagLiteral
|
|
dst[1] = uint8(n)
|
|
i = 2
|
|
case n < 1<<16:
|
|
dst[0] = 61<<2 | tagLiteral
|
|
dst[1] = uint8(n)
|
|
dst[2] = uint8(n >> 8)
|
|
i = 3
|
|
case n < 1<<24:
|
|
dst[0] = 62<<2 | tagLiteral
|
|
dst[1] = uint8(n)
|
|
dst[2] = uint8(n >> 8)
|
|
dst[3] = uint8(n >> 16)
|
|
i = 4
|
|
case int64(n) < 1<<32:
|
|
dst[0] = 63<<2 | tagLiteral
|
|
dst[1] = uint8(n)
|
|
dst[2] = uint8(n >> 8)
|
|
dst[3] = uint8(n >> 16)
|
|
dst[4] = uint8(n >> 24)
|
|
i = 5
|
|
default:
|
|
panic("snappy: source buffer is too long")
|
|
}
|
|
if copy(dst[i:], lit) != len(lit) {
|
|
panic("snappy: destination buffer is too short")
|
|
}
|
|
return i + len(lit)
|
|
}
|
|
|
|
// emitCopy writes a copy chunk and returns the number of bytes written.
|
|
func emitCopy(dst []byte, offset, length int32) int {
|
|
i := 0
|
|
for length > 0 {
|
|
x := length - 4
|
|
if 0 <= x && x < 1<<3 && offset < 1<<11 {
|
|
dst[i+0] = uint8(offset>>8)&0x07<<5 | uint8(x)<<2 | tagCopy1
|
|
dst[i+1] = uint8(offset)
|
|
i += 2
|
|
break
|
|
}
|
|
|
|
x = length
|
|
if x > 1<<6 {
|
|
x = 1 << 6
|
|
}
|
|
dst[i+0] = uint8(x-1)<<2 | tagCopy2
|
|
dst[i+1] = uint8(offset)
|
|
dst[i+2] = uint8(offset >> 8)
|
|
i += 3
|
|
length -= x
|
|
}
|
|
return i
|
|
}
|
|
|
|
// Encode returns the encoded form of src. The returned slice may be a sub-
|
|
// slice of dst if dst was large enough to hold the entire encoded block.
|
|
// Otherwise, a newly allocated slice will be returned.
|
|
//
|
|
// It is valid to pass a nil dst.
|
|
func Encode(dst, src []byte) []byte {
|
|
if n := MaxEncodedLen(len(src)); n < 0 {
|
|
panic(ErrTooLarge)
|
|
} else if len(dst) < n {
|
|
dst = make([]byte, n)
|
|
}
|
|
|
|
// The block starts with the varint-encoded length of the decompressed bytes.
|
|
d := binary.PutUvarint(dst, uint64(len(src)))
|
|
|
|
for len(src) > 0 {
|
|
p := src
|
|
src = nil
|
|
if len(p) > maxBlockSize {
|
|
p, src = p[:maxBlockSize], p[maxBlockSize:]
|
|
}
|
|
d += encodeBlock(dst[d:], p)
|
|
}
|
|
return dst[:d]
|
|
}
|
|
|
|
// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
|
|
// assumes that the varint-encoded length of the decompressed bytes has already
|
|
// been written.
|
|
//
|
|
// It also assumes that:
|
|
// len(dst) >= MaxEncodedLen(len(src)) &&
|
|
// 0 < len(src) && len(src) <= maxBlockSize
|
|
func encodeBlock(dst, src []byte) (d int) {
|
|
// Return early if src is short.
|
|
if len(src) <= 4 {
|
|
return emitLiteral(dst, src)
|
|
}
|
|
|
|
// Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
|
|
const maxTableSize = 1 << 14
|
|
shift, tableSize := uint(32-8), 1<<8
|
|
for tableSize < maxTableSize && tableSize < len(src) {
|
|
shift--
|
|
tableSize *= 2
|
|
}
|
|
var table [maxTableSize]int32
|
|
|
|
// Iterate over the source bytes.
|
|
var (
|
|
s int32 // The iterator position.
|
|
t int32 // The last position with the same hash as s.
|
|
lit int32 // The start position of any pending literal bytes.
|
|
|
|
// Copied from the C++ snappy implementation:
|
|
//
|
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
|
// found, start looking only at every other byte. If 32 more bytes are
|
|
// scanned, look at every third byte, etc.. When a match is found,
|
|
// immediately go back to looking at every byte. This is a small loss
|
|
// (~5% performance, ~0.1% density) for compressible data due to more
|
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a
|
|
// huge win since the compressor quickly "realizes" the data is
|
|
// incompressible and doesn't bother looking for matches everywhere.
|
|
//
|
|
// The "skip" variable keeps track of how many bytes there are since
|
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
|
// the number of bytes to move ahead for each iteration.
|
|
skip uint32 = 32
|
|
)
|
|
for uint32(s+3) < uint32(len(src)) { // The uint32 conversions catch overflow from the +3.
|
|
// Update the hash table.
|
|
b0, b1, b2, b3 := src[s], src[s+1], src[s+2], src[s+3]
|
|
h := uint32(b0) | uint32(b1)<<8 | uint32(b2)<<16 | uint32(b3)<<24
|
|
p := &table[(h*0x1e35a7bd)>>shift]
|
|
// We need to to store values in [-1, inf) in table. To save
|
|
// some initialization time, (re)use the table's zero value
|
|
// and shift the values against this zero: add 1 on writes,
|
|
// subtract 1 on reads.
|
|
t, *p = *p-1, s+1
|
|
// If t is invalid or src[s:s+4] differs from src[t:t+4], accumulate a literal byte.
|
|
if t < 0 || s-t >= maxOffset || b0 != src[t] || b1 != src[t+1] || b2 != src[t+2] || b3 != src[t+3] {
|
|
s += int32(skip >> 5)
|
|
skip++
|
|
continue
|
|
}
|
|
skip = 32
|
|
// Otherwise, we have a match. First, emit any pending literal bytes.
|
|
if lit != s {
|
|
d += emitLiteral(dst[d:], src[lit:s])
|
|
}
|
|
// Extend the match to be as long as possible.
|
|
s0 := s
|
|
s, t = s+4, t+4
|
|
for int(s) < len(src) && src[s] == src[t] {
|
|
s++
|
|
t++
|
|
}
|
|
// Emit the copied bytes.
|
|
d += emitCopy(dst[d:], s-t, s-s0)
|
|
lit = s
|
|
}
|
|
|
|
// Emit any final pending literal bytes and return.
|
|
if int(lit) != len(src) {
|
|
d += emitLiteral(dst[d:], src[lit:])
|
|
}
|
|
return d
|
|
}
|
|
|
|
// MaxEncodedLen returns the maximum length of a snappy block, given its
|
|
// uncompressed length.
|
|
//
|
|
// It will return a negative value if srcLen is too large to encode.
|
|
func MaxEncodedLen(srcLen int) int {
|
|
n := uint64(srcLen)
|
|
if n > 0xffffffff {
|
|
return -1
|
|
}
|
|
// Compressed data can be defined as:
|
|
// compressed := item* literal*
|
|
// item := literal* copy
|
|
//
|
|
// The trailing literal sequence has a space blowup of at most 62/60
|
|
// since a literal of length 60 needs one tag byte + one extra byte
|
|
// for length information.
|
|
//
|
|
// Item blowup is trickier to measure. Suppose the "copy" op copies
|
|
// 4 bytes of data. Because of a special check in the encoding code,
|
|
// we produce a 4-byte copy only if the offset is < 65536. Therefore
|
|
// the copy op takes 3 bytes to encode, and this type of item leads
|
|
// to at most the 62/60 blowup for representing literals.
|
|
//
|
|
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
|
|
// enough, it will take 5 bytes to encode the copy op. Therefore the
|
|
// worst case here is a one-byte literal followed by a five-byte copy.
|
|
// That is, 6 bytes of input turn into 7 bytes of "compressed" data.
|
|
//
|
|
// This last factor dominates the blowup, so the final estimate is:
|
|
n = 32 + n + n/6
|
|
if n > 0xffffffff {
|
|
return -1
|
|
}
|
|
return int(n)
|
|
}
|
|
|
|
var errClosed = errors.New("snappy: Writer is closed")
|
|
|
|
// NewWriter returns a new Writer that compresses to w.
|
|
//
|
|
// The Writer returned does not buffer writes. There is no need to Flush or
|
|
// Close such a Writer.
|
|
//
|
|
// Deprecated: the Writer returned is not suitable for many small writes, only
|
|
// for few large writes. Use NewBufferedWriter instead, which is efficient
|
|
// regardless of the frequency and shape of the writes, and remember to Close
|
|
// that Writer when done.
|
|
func NewWriter(w io.Writer) *Writer {
|
|
return &Writer{
|
|
w: w,
|
|
obuf: make([]byte, obufLen),
|
|
}
|
|
}
|
|
|
|
// NewBufferedWriter returns a new Writer that compresses to w, using the
|
|
// framing format described at
|
|
// https://github.com/google/snappy/blob/master/framing_format.txt
|
|
//
|
|
// The Writer returned buffers writes. Users must call Close to guarantee all
|
|
// data has been forwarded to the underlying io.Writer. They may also call
|
|
// Flush zero or more times before calling Close.
|
|
func NewBufferedWriter(w io.Writer) *Writer {
|
|
return &Writer{
|
|
w: w,
|
|
ibuf: make([]byte, 0, maxBlockSize),
|
|
obuf: make([]byte, obufLen),
|
|
}
|
|
}
|
|
|
|
// Writer is an io.Writer than can write Snappy-compressed bytes.
|
|
type Writer struct {
|
|
w io.Writer
|
|
err error
|
|
|
|
// ibuf is a buffer for the incoming (uncompressed) bytes.
|
|
//
|
|
// Its use is optional. For backwards compatibility, Writers created by the
|
|
// NewWriter function have ibuf == nil, do not buffer incoming bytes, and
|
|
// therefore do not need to be Flush'ed or Close'd.
|
|
ibuf []byte
|
|
|
|
// obuf is a buffer for the outgoing (compressed) bytes.
|
|
obuf []byte
|
|
|
|
// wroteStreamHeader is whether we have written the stream header.
|
|
wroteStreamHeader bool
|
|
}
|
|
|
|
// Reset discards the writer's state and switches the Snappy writer to write to
|
|
// w. This permits reusing a Writer rather than allocating a new one.
|
|
func (w *Writer) Reset(writer io.Writer) {
|
|
w.w = writer
|
|
w.err = nil
|
|
if w.ibuf != nil {
|
|
w.ibuf = w.ibuf[:0]
|
|
}
|
|
w.wroteStreamHeader = false
|
|
}
|
|
|
|
// Write satisfies the io.Writer interface.
|
|
func (w *Writer) Write(p []byte) (nRet int, errRet error) {
|
|
if w.ibuf == nil {
|
|
// Do not buffer incoming bytes. This does not perform or compress well
|
|
// if the caller of Writer.Write writes many small slices. This
|
|
// behavior is therefore deprecated, but still supported for backwards
|
|
// compatibility with code that doesn't explicitly Flush or Close.
|
|
return w.write(p)
|
|
}
|
|
|
|
// The remainder of this method is based on bufio.Writer.Write from the
|
|
// standard library.
|
|
|
|
for len(p) > (cap(w.ibuf)-len(w.ibuf)) && w.err == nil {
|
|
var n int
|
|
if len(w.ibuf) == 0 {
|
|
// Large write, empty buffer.
|
|
// Write directly from p to avoid copy.
|
|
n, _ = w.write(p)
|
|
} else {
|
|
n = copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
|
|
w.ibuf = w.ibuf[:len(w.ibuf)+n]
|
|
w.Flush()
|
|
}
|
|
nRet += n
|
|
p = p[n:]
|
|
}
|
|
if w.err != nil {
|
|
return nRet, w.err
|
|
}
|
|
n := copy(w.ibuf[len(w.ibuf):cap(w.ibuf)], p)
|
|
w.ibuf = w.ibuf[:len(w.ibuf)+n]
|
|
nRet += n
|
|
return nRet, nil
|
|
}
|
|
|
|
func (w *Writer) write(p []byte) (nRet int, errRet error) {
|
|
if w.err != nil {
|
|
return 0, w.err
|
|
}
|
|
for len(p) > 0 {
|
|
obufStart := len(magicChunk)
|
|
if !w.wroteStreamHeader {
|
|
w.wroteStreamHeader = true
|
|
copy(w.obuf, magicChunk)
|
|
obufStart = 0
|
|
}
|
|
|
|
var uncompressed []byte
|
|
if len(p) > maxBlockSize {
|
|
uncompressed, p = p[:maxBlockSize], p[maxBlockSize:]
|
|
} else {
|
|
uncompressed, p = p, nil
|
|
}
|
|
checksum := crc(uncompressed)
|
|
|
|
// Compress the buffer, discarding the result if the improvement
|
|
// isn't at least 12.5%.
|
|
compressed := Encode(w.obuf[obufHeaderLen:], uncompressed)
|
|
chunkType := uint8(chunkTypeCompressedData)
|
|
chunkLen := 4 + len(compressed)
|
|
obufEnd := obufHeaderLen + len(compressed)
|
|
if len(compressed) >= len(uncompressed)-len(uncompressed)/8 {
|
|
chunkType = chunkTypeUncompressedData
|
|
chunkLen = 4 + len(uncompressed)
|
|
obufEnd = obufHeaderLen
|
|
}
|
|
|
|
// Fill in the per-chunk header that comes before the body.
|
|
w.obuf[len(magicChunk)+0] = chunkType
|
|
w.obuf[len(magicChunk)+1] = uint8(chunkLen >> 0)
|
|
w.obuf[len(magicChunk)+2] = uint8(chunkLen >> 8)
|
|
w.obuf[len(magicChunk)+3] = uint8(chunkLen >> 16)
|
|
w.obuf[len(magicChunk)+4] = uint8(checksum >> 0)
|
|
w.obuf[len(magicChunk)+5] = uint8(checksum >> 8)
|
|
w.obuf[len(magicChunk)+6] = uint8(checksum >> 16)
|
|
w.obuf[len(magicChunk)+7] = uint8(checksum >> 24)
|
|
|
|
if _, err := w.w.Write(w.obuf[obufStart:obufEnd]); err != nil {
|
|
w.err = err
|
|
return nRet, err
|
|
}
|
|
if chunkType == chunkTypeUncompressedData {
|
|
if _, err := w.w.Write(uncompressed); err != nil {
|
|
w.err = err
|
|
return nRet, err
|
|
}
|
|
}
|
|
nRet += len(uncompressed)
|
|
}
|
|
return nRet, nil
|
|
}
|
|
|
|
// Flush flushes the Writer to its underlying io.Writer.
|
|
func (w *Writer) Flush() error {
|
|
if w.err != nil {
|
|
return w.err
|
|
}
|
|
if len(w.ibuf) == 0 {
|
|
return nil
|
|
}
|
|
w.write(w.ibuf)
|
|
w.ibuf = w.ibuf[:0]
|
|
return w.err
|
|
}
|
|
|
|
// Close calls Flush and then closes the Writer.
|
|
func (w *Writer) Close() error {
|
|
w.Flush()
|
|
ret := w.err
|
|
if w.err == nil {
|
|
w.err = errClosed
|
|
}
|
|
return ret
|
|
}
|