forked from Shiloh/githaven
792b4dba2c
* update github.com/blevesearch/bleve v2.0.2 -> v2.0.3 * github.com/denisenkom/go-mssqldb v0.9.0 -> v0.10.0 * github.com/editorconfig/editorconfig-core-go v2.4.1 -> v2.4.2 * github.com/go-chi/cors v1.1.1 -> v1.2.0 * github.com/go-git/go-billy v5.0.0 -> v5.1.0 * github.com/go-git/go-git v5.2.0 -> v5.3.0 * github.com/go-ldap/ldap v3.2.4 -> v3.3.0 * github.com/go-redis/redis v8.6.0 -> v8.8.2 * github.com/go-sql-driver/mysql v1.5.0 -> v1.6.0 * github.com/go-swagger/go-swagger v0.26.1 -> v0.27.0 * github.com/lib/pq v1.9.0 -> v1.10.1 * github.com/mattn/go-sqlite3 v1.14.6 -> v1.14.7 * github.com/go-testfixtures/testfixtures v3.5.0 -> v3.6.0 * github.com/issue9/identicon v1.0.1 -> v1.2.0 * github.com/klauspost/compress v1.11.8 -> v1.12.1 * github.com/mgechev/revive v1.0.3 -> v1.0.6 * github.com/microcosm-cc/bluemonday v1.0.7 -> v1.0.8 * github.com/niklasfasching/go-org v1.4.0 -> v1.5.0 * github.com/olivere/elastic v7.0.22 -> v7.0.24 * github.com/pelletier/go-toml v1.8.1 -> v1.9.0 * github.com/prometheus/client_golang v1.9.0 -> v1.10.0 * github.com/xanzy/go-gitlab v0.44.0 -> v0.48.0 * github.com/yuin/goldmark v1.3.3 -> v1.3.5 * github.com/6543/go-version v1.2.4 -> v1.3.1 * do github.com/lib/pq v1.10.0 -> v1.10.1 again ...
79 lines
2.3 KiB
Go
Vendored
79 lines
2.3 KiB
Go
Vendored
package dns
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/ecdsa"
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"strconv"
|
|
|
|
"golang.org/x/crypto/ed25519"
|
|
)
|
|
|
|
const format = "Private-key-format: v1.3\n"
|
|
|
|
var bigIntOne = big.NewInt(1)
|
|
|
|
// PrivateKeyString converts a PrivateKey to a string. This string has the same
|
|
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
|
|
// It needs some info from the key (the algorithm), so its a method of the DNSKEY.
|
|
// It supports *rsa.PrivateKey, *ecdsa.PrivateKey and ed25519.PrivateKey.
|
|
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
|
|
algorithm := strconv.Itoa(int(r.Algorithm))
|
|
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
|
|
|
|
switch p := p.(type) {
|
|
case *rsa.PrivateKey:
|
|
modulus := toBase64(p.PublicKey.N.Bytes())
|
|
e := big.NewInt(int64(p.PublicKey.E))
|
|
publicExponent := toBase64(e.Bytes())
|
|
privateExponent := toBase64(p.D.Bytes())
|
|
prime1 := toBase64(p.Primes[0].Bytes())
|
|
prime2 := toBase64(p.Primes[1].Bytes())
|
|
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
|
|
// and from: http://code.google.com/p/go/issues/detail?id=987
|
|
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
|
|
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
|
|
exp1 := new(big.Int).Mod(p.D, p1)
|
|
exp2 := new(big.Int).Mod(p.D, q1)
|
|
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
|
|
|
|
exponent1 := toBase64(exp1.Bytes())
|
|
exponent2 := toBase64(exp2.Bytes())
|
|
coefficient := toBase64(coeff.Bytes())
|
|
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"Modulus: " + modulus + "\n" +
|
|
"PublicExponent: " + publicExponent + "\n" +
|
|
"PrivateExponent: " + privateExponent + "\n" +
|
|
"Prime1: " + prime1 + "\n" +
|
|
"Prime2: " + prime2 + "\n" +
|
|
"Exponent1: " + exponent1 + "\n" +
|
|
"Exponent2: " + exponent2 + "\n" +
|
|
"Coefficient: " + coefficient + "\n"
|
|
|
|
case *ecdsa.PrivateKey:
|
|
var intlen int
|
|
switch r.Algorithm {
|
|
case ECDSAP256SHA256:
|
|
intlen = 32
|
|
case ECDSAP384SHA384:
|
|
intlen = 48
|
|
}
|
|
private := toBase64(intToBytes(p.D, intlen))
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
case ed25519.PrivateKey:
|
|
private := toBase64(p.Seed())
|
|
return format +
|
|
"Algorithm: " + algorithm + "\n" +
|
|
"PrivateKey: " + private + "\n"
|
|
|
|
default:
|
|
return ""
|
|
}
|
|
}
|