forked from Shiloh/githaven
b6a95a8cb3
* Dropped unused codekit config * Integrated dynamic and static bindata for public * Ignore public bindata * Add a general generate make task * Integrated flexible public assets into web command * Updated vendoring, added all missiong govendor deps * Made the linter happy with the bindata and dynamic code * Moved public bindata definition to modules directory * Ignoring the new bindata path now * Updated to the new public modules import path * Updated public bindata command and drop the new prefix
457 lines
8.9 KiB
Go
457 lines
8.9 KiB
Go
// Copyright 2010 Petar Maymounkov. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// A Left-Leaning Red-Black (LLRB) implementation of 2-3 balanced binary search trees,
|
|
// based on the following work:
|
|
//
|
|
// http://www.cs.princeton.edu/~rs/talks/LLRB/08Penn.pdf
|
|
// http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf
|
|
// http://www.cs.princeton.edu/~rs/talks/LLRB/Java/RedBlackBST.java
|
|
//
|
|
// 2-3 trees (and the run-time equivalent 2-3-4 trees) are the de facto standard BST
|
|
// algoritms found in implementations of Python, Java, and other libraries. The LLRB
|
|
// implementation of 2-3 trees is a recent improvement on the traditional implementation,
|
|
// observed and documented by Robert Sedgewick.
|
|
//
|
|
package llrb
|
|
|
|
// Tree is a Left-Leaning Red-Black (LLRB) implementation of 2-3 trees
|
|
type LLRB struct {
|
|
count int
|
|
root *Node
|
|
}
|
|
|
|
type Node struct {
|
|
Item
|
|
Left, Right *Node // Pointers to left and right child nodes
|
|
Black bool // If set, the color of the link (incoming from the parent) is black
|
|
// In the LLRB, new nodes are always red, hence the zero-value for node
|
|
}
|
|
|
|
type Item interface {
|
|
Less(than Item) bool
|
|
}
|
|
|
|
//
|
|
func less(x, y Item) bool {
|
|
if x == pinf {
|
|
return false
|
|
}
|
|
if x == ninf {
|
|
return true
|
|
}
|
|
return x.Less(y)
|
|
}
|
|
|
|
// Inf returns an Item that is "bigger than" any other item, if sign is positive.
|
|
// Otherwise it returns an Item that is "smaller than" any other item.
|
|
func Inf(sign int) Item {
|
|
if sign == 0 {
|
|
panic("sign")
|
|
}
|
|
if sign > 0 {
|
|
return pinf
|
|
}
|
|
return ninf
|
|
}
|
|
|
|
var (
|
|
ninf = nInf{}
|
|
pinf = pInf{}
|
|
)
|
|
|
|
type nInf struct{}
|
|
|
|
func (nInf) Less(Item) bool {
|
|
return true
|
|
}
|
|
|
|
type pInf struct{}
|
|
|
|
func (pInf) Less(Item) bool {
|
|
return false
|
|
}
|
|
|
|
// New() allocates a new tree
|
|
func New() *LLRB {
|
|
return &LLRB{}
|
|
}
|
|
|
|
// SetRoot sets the root node of the tree.
|
|
// It is intended to be used by functions that deserialize the tree.
|
|
func (t *LLRB) SetRoot(r *Node) {
|
|
t.root = r
|
|
}
|
|
|
|
// Root returns the root node of the tree.
|
|
// It is intended to be used by functions that serialize the tree.
|
|
func (t *LLRB) Root() *Node {
|
|
return t.root
|
|
}
|
|
|
|
// Len returns the number of nodes in the tree.
|
|
func (t *LLRB) Len() int { return t.count }
|
|
|
|
// Has returns true if the tree contains an element whose order is the same as that of key.
|
|
func (t *LLRB) Has(key Item) bool {
|
|
return t.Get(key) != nil
|
|
}
|
|
|
|
// Get retrieves an element from the tree whose order is the same as that of key.
|
|
func (t *LLRB) Get(key Item) Item {
|
|
h := t.root
|
|
for h != nil {
|
|
switch {
|
|
case less(key, h.Item):
|
|
h = h.Left
|
|
case less(h.Item, key):
|
|
h = h.Right
|
|
default:
|
|
return h.Item
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Min returns the minimum element in the tree.
|
|
func (t *LLRB) Min() Item {
|
|
h := t.root
|
|
if h == nil {
|
|
return nil
|
|
}
|
|
for h.Left != nil {
|
|
h = h.Left
|
|
}
|
|
return h.Item
|
|
}
|
|
|
|
// Max returns the maximum element in the tree.
|
|
func (t *LLRB) Max() Item {
|
|
h := t.root
|
|
if h == nil {
|
|
return nil
|
|
}
|
|
for h.Right != nil {
|
|
h = h.Right
|
|
}
|
|
return h.Item
|
|
}
|
|
|
|
func (t *LLRB) ReplaceOrInsertBulk(items ...Item) {
|
|
for _, i := range items {
|
|
t.ReplaceOrInsert(i)
|
|
}
|
|
}
|
|
|
|
func (t *LLRB) InsertNoReplaceBulk(items ...Item) {
|
|
for _, i := range items {
|
|
t.InsertNoReplace(i)
|
|
}
|
|
}
|
|
|
|
// ReplaceOrInsert inserts item into the tree. If an existing
|
|
// element has the same order, it is removed from the tree and returned.
|
|
func (t *LLRB) ReplaceOrInsert(item Item) Item {
|
|
if item == nil {
|
|
panic("inserting nil item")
|
|
}
|
|
var replaced Item
|
|
t.root, replaced = t.replaceOrInsert(t.root, item)
|
|
t.root.Black = true
|
|
if replaced == nil {
|
|
t.count++
|
|
}
|
|
return replaced
|
|
}
|
|
|
|
func (t *LLRB) replaceOrInsert(h *Node, item Item) (*Node, Item) {
|
|
if h == nil {
|
|
return newNode(item), nil
|
|
}
|
|
|
|
h = walkDownRot23(h)
|
|
|
|
var replaced Item
|
|
if less(item, h.Item) { // BUG
|
|
h.Left, replaced = t.replaceOrInsert(h.Left, item)
|
|
} else if less(h.Item, item) {
|
|
h.Right, replaced = t.replaceOrInsert(h.Right, item)
|
|
} else {
|
|
replaced, h.Item = h.Item, item
|
|
}
|
|
|
|
h = walkUpRot23(h)
|
|
|
|
return h, replaced
|
|
}
|
|
|
|
// InsertNoReplace inserts item into the tree. If an existing
|
|
// element has the same order, both elements remain in the tree.
|
|
func (t *LLRB) InsertNoReplace(item Item) {
|
|
if item == nil {
|
|
panic("inserting nil item")
|
|
}
|
|
t.root = t.insertNoReplace(t.root, item)
|
|
t.root.Black = true
|
|
t.count++
|
|
}
|
|
|
|
func (t *LLRB) insertNoReplace(h *Node, item Item) *Node {
|
|
if h == nil {
|
|
return newNode(item)
|
|
}
|
|
|
|
h = walkDownRot23(h)
|
|
|
|
if less(item, h.Item) {
|
|
h.Left = t.insertNoReplace(h.Left, item)
|
|
} else {
|
|
h.Right = t.insertNoReplace(h.Right, item)
|
|
}
|
|
|
|
return walkUpRot23(h)
|
|
}
|
|
|
|
// Rotation driver routines for 2-3 algorithm
|
|
|
|
func walkDownRot23(h *Node) *Node { return h }
|
|
|
|
func walkUpRot23(h *Node) *Node {
|
|
if isRed(h.Right) && !isRed(h.Left) {
|
|
h = rotateLeft(h)
|
|
}
|
|
|
|
if isRed(h.Left) && isRed(h.Left.Left) {
|
|
h = rotateRight(h)
|
|
}
|
|
|
|
if isRed(h.Left) && isRed(h.Right) {
|
|
flip(h)
|
|
}
|
|
|
|
return h
|
|
}
|
|
|
|
// Rotation driver routines for 2-3-4 algorithm
|
|
|
|
func walkDownRot234(h *Node) *Node {
|
|
if isRed(h.Left) && isRed(h.Right) {
|
|
flip(h)
|
|
}
|
|
|
|
return h
|
|
}
|
|
|
|
func walkUpRot234(h *Node) *Node {
|
|
if isRed(h.Right) && !isRed(h.Left) {
|
|
h = rotateLeft(h)
|
|
}
|
|
|
|
if isRed(h.Left) && isRed(h.Left.Left) {
|
|
h = rotateRight(h)
|
|
}
|
|
|
|
return h
|
|
}
|
|
|
|
// DeleteMin deletes the minimum element in the tree and returns the
|
|
// deleted item or nil otherwise.
|
|
func (t *LLRB) DeleteMin() Item {
|
|
var deleted Item
|
|
t.root, deleted = deleteMin(t.root)
|
|
if t.root != nil {
|
|
t.root.Black = true
|
|
}
|
|
if deleted != nil {
|
|
t.count--
|
|
}
|
|
return deleted
|
|
}
|
|
|
|
// deleteMin code for LLRB 2-3 trees
|
|
func deleteMin(h *Node) (*Node, Item) {
|
|
if h == nil {
|
|
return nil, nil
|
|
}
|
|
if h.Left == nil {
|
|
return nil, h.Item
|
|
}
|
|
|
|
if !isRed(h.Left) && !isRed(h.Left.Left) {
|
|
h = moveRedLeft(h)
|
|
}
|
|
|
|
var deleted Item
|
|
h.Left, deleted = deleteMin(h.Left)
|
|
|
|
return fixUp(h), deleted
|
|
}
|
|
|
|
// DeleteMax deletes the maximum element in the tree and returns
|
|
// the deleted item or nil otherwise
|
|
func (t *LLRB) DeleteMax() Item {
|
|
var deleted Item
|
|
t.root, deleted = deleteMax(t.root)
|
|
if t.root != nil {
|
|
t.root.Black = true
|
|
}
|
|
if deleted != nil {
|
|
t.count--
|
|
}
|
|
return deleted
|
|
}
|
|
|
|
func deleteMax(h *Node) (*Node, Item) {
|
|
if h == nil {
|
|
return nil, nil
|
|
}
|
|
if isRed(h.Left) {
|
|
h = rotateRight(h)
|
|
}
|
|
if h.Right == nil {
|
|
return nil, h.Item
|
|
}
|
|
if !isRed(h.Right) && !isRed(h.Right.Left) {
|
|
h = moveRedRight(h)
|
|
}
|
|
var deleted Item
|
|
h.Right, deleted = deleteMax(h.Right)
|
|
|
|
return fixUp(h), deleted
|
|
}
|
|
|
|
// Delete deletes an item from the tree whose key equals key.
|
|
// The deleted item is return, otherwise nil is returned.
|
|
func (t *LLRB) Delete(key Item) Item {
|
|
var deleted Item
|
|
t.root, deleted = t.delete(t.root, key)
|
|
if t.root != nil {
|
|
t.root.Black = true
|
|
}
|
|
if deleted != nil {
|
|
t.count--
|
|
}
|
|
return deleted
|
|
}
|
|
|
|
func (t *LLRB) delete(h *Node, item Item) (*Node, Item) {
|
|
var deleted Item
|
|
if h == nil {
|
|
return nil, nil
|
|
}
|
|
if less(item, h.Item) {
|
|
if h.Left == nil { // item not present. Nothing to delete
|
|
return h, nil
|
|
}
|
|
if !isRed(h.Left) && !isRed(h.Left.Left) {
|
|
h = moveRedLeft(h)
|
|
}
|
|
h.Left, deleted = t.delete(h.Left, item)
|
|
} else {
|
|
if isRed(h.Left) {
|
|
h = rotateRight(h)
|
|
}
|
|
// If @item equals @h.Item and no right children at @h
|
|
if !less(h.Item, item) && h.Right == nil {
|
|
return nil, h.Item
|
|
}
|
|
// PETAR: Added 'h.Right != nil' below
|
|
if h.Right != nil && !isRed(h.Right) && !isRed(h.Right.Left) {
|
|
h = moveRedRight(h)
|
|
}
|
|
// If @item equals @h.Item, and (from above) 'h.Right != nil'
|
|
if !less(h.Item, item) {
|
|
var subDeleted Item
|
|
h.Right, subDeleted = deleteMin(h.Right)
|
|
if subDeleted == nil {
|
|
panic("logic")
|
|
}
|
|
deleted, h.Item = h.Item, subDeleted
|
|
} else { // Else, @item is bigger than @h.Item
|
|
h.Right, deleted = t.delete(h.Right, item)
|
|
}
|
|
}
|
|
|
|
return fixUp(h), deleted
|
|
}
|
|
|
|
// Internal node manipulation routines
|
|
|
|
func newNode(item Item) *Node { return &Node{Item: item} }
|
|
|
|
func isRed(h *Node) bool {
|
|
if h == nil {
|
|
return false
|
|
}
|
|
return !h.Black
|
|
}
|
|
|
|
func rotateLeft(h *Node) *Node {
|
|
x := h.Right
|
|
if x.Black {
|
|
panic("rotating a black link")
|
|
}
|
|
h.Right = x.Left
|
|
x.Left = h
|
|
x.Black = h.Black
|
|
h.Black = false
|
|
return x
|
|
}
|
|
|
|
func rotateRight(h *Node) *Node {
|
|
x := h.Left
|
|
if x.Black {
|
|
panic("rotating a black link")
|
|
}
|
|
h.Left = x.Right
|
|
x.Right = h
|
|
x.Black = h.Black
|
|
h.Black = false
|
|
return x
|
|
}
|
|
|
|
// REQUIRE: Left and Right children must be present
|
|
func flip(h *Node) {
|
|
h.Black = !h.Black
|
|
h.Left.Black = !h.Left.Black
|
|
h.Right.Black = !h.Right.Black
|
|
}
|
|
|
|
// REQUIRE: Left and Right children must be present
|
|
func moveRedLeft(h *Node) *Node {
|
|
flip(h)
|
|
if isRed(h.Right.Left) {
|
|
h.Right = rotateRight(h.Right)
|
|
h = rotateLeft(h)
|
|
flip(h)
|
|
}
|
|
return h
|
|
}
|
|
|
|
// REQUIRE: Left and Right children must be present
|
|
func moveRedRight(h *Node) *Node {
|
|
flip(h)
|
|
if isRed(h.Left.Left) {
|
|
h = rotateRight(h)
|
|
flip(h)
|
|
}
|
|
return h
|
|
}
|
|
|
|
func fixUp(h *Node) *Node {
|
|
if isRed(h.Right) {
|
|
h = rotateLeft(h)
|
|
}
|
|
|
|
if isRed(h.Left) && isRed(h.Left.Left) {
|
|
h = rotateRight(h)
|
|
}
|
|
|
|
if isRed(h.Left) && isRed(h.Right) {
|
|
flip(h)
|
|
}
|
|
|
|
return h
|
|
}
|