forked from Shiloh/githaven
461 lines
12 KiB
Go
461 lines
12 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssh
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log"
|
|
"net"
|
|
"sync"
|
|
)
|
|
|
|
// debugHandshake, if set, prints messages sent and received. Key
|
|
// exchange messages are printed as if DH were used, so the debug
|
|
// messages are wrong when using ECDH.
|
|
const debugHandshake = false
|
|
|
|
// keyingTransport is a packet based transport that supports key
|
|
// changes. It need not be thread-safe. It should pass through
|
|
// msgNewKeys in both directions.
|
|
type keyingTransport interface {
|
|
packetConn
|
|
|
|
// prepareKeyChange sets up a key change. The key change for a
|
|
// direction will be effected if a msgNewKeys message is sent
|
|
// or received.
|
|
prepareKeyChange(*algorithms, *kexResult) error
|
|
}
|
|
|
|
// handshakeTransport implements rekeying on top of a keyingTransport
|
|
// and offers a thread-safe writePacket() interface.
|
|
type handshakeTransport struct {
|
|
conn keyingTransport
|
|
config *Config
|
|
|
|
serverVersion []byte
|
|
clientVersion []byte
|
|
|
|
// hostKeys is non-empty if we are the server. In that case,
|
|
// it contains all host keys that can be used to sign the
|
|
// connection.
|
|
hostKeys []Signer
|
|
|
|
// hostKeyAlgorithms is non-empty if we are the client. In that case,
|
|
// we accept these key types from the server as host key.
|
|
hostKeyAlgorithms []string
|
|
|
|
// On read error, incoming is closed, and readError is set.
|
|
incoming chan []byte
|
|
readError error
|
|
|
|
// data for host key checking
|
|
hostKeyCallback func(hostname string, remote net.Addr, key PublicKey) error
|
|
dialAddress string
|
|
remoteAddr net.Addr
|
|
|
|
readSinceKex uint64
|
|
|
|
// Protects the writing side of the connection
|
|
mu sync.Mutex
|
|
cond *sync.Cond
|
|
sentInitPacket []byte
|
|
sentInitMsg *kexInitMsg
|
|
writtenSinceKex uint64
|
|
writeError error
|
|
|
|
// The session ID or nil if first kex did not complete yet.
|
|
sessionID []byte
|
|
}
|
|
|
|
func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
|
|
t := &handshakeTransport{
|
|
conn: conn,
|
|
serverVersion: serverVersion,
|
|
clientVersion: clientVersion,
|
|
incoming: make(chan []byte, 16),
|
|
config: config,
|
|
}
|
|
t.cond = sync.NewCond(&t.mu)
|
|
return t
|
|
}
|
|
|
|
func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
|
|
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
|
|
t.dialAddress = dialAddr
|
|
t.remoteAddr = addr
|
|
t.hostKeyCallback = config.HostKeyCallback
|
|
if config.HostKeyAlgorithms != nil {
|
|
t.hostKeyAlgorithms = config.HostKeyAlgorithms
|
|
} else {
|
|
t.hostKeyAlgorithms = supportedHostKeyAlgos
|
|
}
|
|
go t.readLoop()
|
|
return t
|
|
}
|
|
|
|
func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
|
|
t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
|
|
t.hostKeys = config.hostKeys
|
|
go t.readLoop()
|
|
return t
|
|
}
|
|
|
|
func (t *handshakeTransport) getSessionID() []byte {
|
|
return t.sessionID
|
|
}
|
|
|
|
func (t *handshakeTransport) id() string {
|
|
if len(t.hostKeys) > 0 {
|
|
return "server"
|
|
}
|
|
return "client"
|
|
}
|
|
|
|
func (t *handshakeTransport) readPacket() ([]byte, error) {
|
|
p, ok := <-t.incoming
|
|
if !ok {
|
|
return nil, t.readError
|
|
}
|
|
return p, nil
|
|
}
|
|
|
|
func (t *handshakeTransport) readLoop() {
|
|
for {
|
|
p, err := t.readOnePacket()
|
|
if err != nil {
|
|
t.readError = err
|
|
close(t.incoming)
|
|
break
|
|
}
|
|
if p[0] == msgIgnore || p[0] == msgDebug {
|
|
continue
|
|
}
|
|
t.incoming <- p
|
|
}
|
|
|
|
// If we can't read, declare the writing part dead too.
|
|
t.mu.Lock()
|
|
defer t.mu.Unlock()
|
|
if t.writeError == nil {
|
|
t.writeError = t.readError
|
|
}
|
|
t.cond.Broadcast()
|
|
}
|
|
|
|
func (t *handshakeTransport) readOnePacket() ([]byte, error) {
|
|
if t.readSinceKex > t.config.RekeyThreshold {
|
|
if err := t.requestKeyChange(); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
p, err := t.conn.readPacket()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t.readSinceKex += uint64(len(p))
|
|
if debugHandshake {
|
|
if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
|
|
log.Printf("%s got data (packet %d bytes)", t.id(), len(p))
|
|
} else {
|
|
msg, err := decode(p)
|
|
log.Printf("%s got %T %v (%v)", t.id(), msg, msg, err)
|
|
}
|
|
}
|
|
if p[0] != msgKexInit {
|
|
return p, nil
|
|
}
|
|
|
|
t.mu.Lock()
|
|
|
|
firstKex := t.sessionID == nil
|
|
|
|
err = t.enterKeyExchangeLocked(p)
|
|
if err != nil {
|
|
// drop connection
|
|
t.conn.Close()
|
|
t.writeError = err
|
|
}
|
|
|
|
if debugHandshake {
|
|
log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
|
|
}
|
|
|
|
// Unblock writers.
|
|
t.sentInitMsg = nil
|
|
t.sentInitPacket = nil
|
|
t.cond.Broadcast()
|
|
t.writtenSinceKex = 0
|
|
t.mu.Unlock()
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t.readSinceKex = 0
|
|
|
|
// By default, a key exchange is hidden from higher layers by
|
|
// translating it into msgIgnore.
|
|
successPacket := []byte{msgIgnore}
|
|
if firstKex {
|
|
// sendKexInit() for the first kex waits for
|
|
// msgNewKeys so the authentication process is
|
|
// guaranteed to happen over an encrypted transport.
|
|
successPacket = []byte{msgNewKeys}
|
|
}
|
|
|
|
return successPacket, nil
|
|
}
|
|
|
|
// keyChangeCategory describes whether a key exchange is the first on a
|
|
// connection, or a subsequent one.
|
|
type keyChangeCategory bool
|
|
|
|
const (
|
|
firstKeyExchange keyChangeCategory = true
|
|
subsequentKeyExchange keyChangeCategory = false
|
|
)
|
|
|
|
// sendKexInit sends a key change message, and returns the message
|
|
// that was sent. After initiating the key change, all writes will be
|
|
// blocked until the change is done, and a failed key change will
|
|
// close the underlying transport. This function is safe for
|
|
// concurrent use by multiple goroutines.
|
|
func (t *handshakeTransport) sendKexInit(isFirst keyChangeCategory) error {
|
|
var err error
|
|
|
|
t.mu.Lock()
|
|
// If this is the initial key change, but we already have a sessionID,
|
|
// then do nothing because the key exchange has already completed
|
|
// asynchronously.
|
|
if !isFirst || t.sessionID == nil {
|
|
_, _, err = t.sendKexInitLocked(isFirst)
|
|
}
|
|
t.mu.Unlock()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if isFirst {
|
|
if packet, err := t.readPacket(); err != nil {
|
|
return err
|
|
} else if packet[0] != msgNewKeys {
|
|
return unexpectedMessageError(msgNewKeys, packet[0])
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (t *handshakeTransport) requestInitialKeyChange() error {
|
|
return t.sendKexInit(firstKeyExchange)
|
|
}
|
|
|
|
func (t *handshakeTransport) requestKeyChange() error {
|
|
return t.sendKexInit(subsequentKeyExchange)
|
|
}
|
|
|
|
// sendKexInitLocked sends a key change message. t.mu must be locked
|
|
// while this happens.
|
|
func (t *handshakeTransport) sendKexInitLocked(isFirst keyChangeCategory) (*kexInitMsg, []byte, error) {
|
|
// kexInits may be sent either in response to the other side,
|
|
// or because our side wants to initiate a key change, so we
|
|
// may have already sent a kexInit. In that case, don't send a
|
|
// second kexInit.
|
|
if t.sentInitMsg != nil {
|
|
return t.sentInitMsg, t.sentInitPacket, nil
|
|
}
|
|
|
|
msg := &kexInitMsg{
|
|
KexAlgos: t.config.KeyExchanges,
|
|
CiphersClientServer: t.config.Ciphers,
|
|
CiphersServerClient: t.config.Ciphers,
|
|
MACsClientServer: t.config.MACs,
|
|
MACsServerClient: t.config.MACs,
|
|
CompressionClientServer: supportedCompressions,
|
|
CompressionServerClient: supportedCompressions,
|
|
}
|
|
io.ReadFull(rand.Reader, msg.Cookie[:])
|
|
|
|
if len(t.hostKeys) > 0 {
|
|
for _, k := range t.hostKeys {
|
|
msg.ServerHostKeyAlgos = append(
|
|
msg.ServerHostKeyAlgos, k.PublicKey().Type())
|
|
}
|
|
} else {
|
|
msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
|
|
}
|
|
packet := Marshal(msg)
|
|
|
|
// writePacket destroys the contents, so save a copy.
|
|
packetCopy := make([]byte, len(packet))
|
|
copy(packetCopy, packet)
|
|
|
|
if err := t.conn.writePacket(packetCopy); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
t.sentInitMsg = msg
|
|
t.sentInitPacket = packet
|
|
return msg, packet, nil
|
|
}
|
|
|
|
func (t *handshakeTransport) writePacket(p []byte) error {
|
|
t.mu.Lock()
|
|
defer t.mu.Unlock()
|
|
|
|
if t.writtenSinceKex > t.config.RekeyThreshold {
|
|
t.sendKexInitLocked(subsequentKeyExchange)
|
|
}
|
|
for t.sentInitMsg != nil && t.writeError == nil {
|
|
t.cond.Wait()
|
|
}
|
|
if t.writeError != nil {
|
|
return t.writeError
|
|
}
|
|
t.writtenSinceKex += uint64(len(p))
|
|
|
|
switch p[0] {
|
|
case msgKexInit:
|
|
return errors.New("ssh: only handshakeTransport can send kexInit")
|
|
case msgNewKeys:
|
|
return errors.New("ssh: only handshakeTransport can send newKeys")
|
|
default:
|
|
return t.conn.writePacket(p)
|
|
}
|
|
}
|
|
|
|
func (t *handshakeTransport) Close() error {
|
|
return t.conn.Close()
|
|
}
|
|
|
|
// enterKeyExchange runs the key exchange. t.mu must be held while running this.
|
|
func (t *handshakeTransport) enterKeyExchangeLocked(otherInitPacket []byte) error {
|
|
if debugHandshake {
|
|
log.Printf("%s entered key exchange", t.id())
|
|
}
|
|
myInit, myInitPacket, err := t.sendKexInitLocked(subsequentKeyExchange)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
otherInit := &kexInitMsg{}
|
|
if err := Unmarshal(otherInitPacket, otherInit); err != nil {
|
|
return err
|
|
}
|
|
|
|
magics := handshakeMagics{
|
|
clientVersion: t.clientVersion,
|
|
serverVersion: t.serverVersion,
|
|
clientKexInit: otherInitPacket,
|
|
serverKexInit: myInitPacket,
|
|
}
|
|
|
|
clientInit := otherInit
|
|
serverInit := myInit
|
|
if len(t.hostKeys) == 0 {
|
|
clientInit = myInit
|
|
serverInit = otherInit
|
|
|
|
magics.clientKexInit = myInitPacket
|
|
magics.serverKexInit = otherInitPacket
|
|
}
|
|
|
|
algs, err := findAgreedAlgorithms(clientInit, serverInit)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// We don't send FirstKexFollows, but we handle receiving it.
|
|
//
|
|
// RFC 4253 section 7 defines the kex and the agreement method for
|
|
// first_kex_packet_follows. It states that the guessed packet
|
|
// should be ignored if the "kex algorithm and/or the host
|
|
// key algorithm is guessed wrong (server and client have
|
|
// different preferred algorithm), or if any of the other
|
|
// algorithms cannot be agreed upon". The other algorithms have
|
|
// already been checked above so the kex algorithm and host key
|
|
// algorithm are checked here.
|
|
if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
|
|
// other side sent a kex message for the wrong algorithm,
|
|
// which we have to ignore.
|
|
if _, err := t.conn.readPacket(); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
kex, ok := kexAlgoMap[algs.kex]
|
|
if !ok {
|
|
return fmt.Errorf("ssh: unexpected key exchange algorithm %v", algs.kex)
|
|
}
|
|
|
|
var result *kexResult
|
|
if len(t.hostKeys) > 0 {
|
|
result, err = t.server(kex, algs, &magics)
|
|
} else {
|
|
result, err = t.client(kex, algs, &magics)
|
|
}
|
|
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if t.sessionID == nil {
|
|
t.sessionID = result.H
|
|
}
|
|
result.SessionID = t.sessionID
|
|
|
|
t.conn.prepareKeyChange(algs, result)
|
|
if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
|
|
return err
|
|
}
|
|
if packet, err := t.conn.readPacket(); err != nil {
|
|
return err
|
|
} else if packet[0] != msgNewKeys {
|
|
return unexpectedMessageError(msgNewKeys, packet[0])
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
|
|
var hostKey Signer
|
|
for _, k := range t.hostKeys {
|
|
if algs.hostKey == k.PublicKey().Type() {
|
|
hostKey = k
|
|
}
|
|
}
|
|
|
|
r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
|
|
return r, err
|
|
}
|
|
|
|
func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
|
|
result, err := kex.Client(t.conn, t.config.Rand, magics)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
hostKey, err := ParsePublicKey(result.HostKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := verifyHostKeySignature(hostKey, result); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if t.hostKeyCallback != nil {
|
|
err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return result, nil
|
|
}
|