brotherton-erpnext/erpnext/stock/report/stock_analytics/stock_analytics.py
2022-03-28 18:52:46 +05:30

224 lines
6.9 KiB
Python

# Copyright (c) 2013, Frappe Technologies Pvt. Ltd. and contributors
# For license information, please see license.txt
import datetime
import frappe
from frappe import _, scrub
from frappe.utils import get_first_day as get_first_day_of_month
from frappe.utils import get_first_day_of_week, get_quarter_start, getdate
from erpnext.accounts.utils import get_fiscal_year
from erpnext.stock.report.stock_balance.stock_balance import (
get_item_details,
get_items,
get_stock_ledger_entries,
)
from erpnext.stock.utils import is_reposting_item_valuation_in_progress
def execute(filters=None):
is_reposting_item_valuation_in_progress()
filters = frappe._dict(filters or {})
columns = get_columns(filters)
data = get_data(filters)
chart = get_chart_data(columns)
return columns, data, None, chart
def get_columns(filters):
columns = [
{"label": _("Item"), "options": "Item", "fieldname": "name", "fieldtype": "Link", "width": 140},
{
"label": _("Item Name"),
"options": "Item",
"fieldname": "item_name",
"fieldtype": "Link",
"width": 140,
},
{
"label": _("Item Group"),
"options": "Item Group",
"fieldname": "item_group",
"fieldtype": "Link",
"width": 140,
},
{"label": _("Brand"), "fieldname": "brand", "fieldtype": "Data", "width": 120},
{"label": _("UOM"), "fieldname": "uom", "fieldtype": "Data", "width": 120},
]
ranges = get_period_date_ranges(filters)
for dummy, end_date in ranges:
period = get_period(end_date, filters)
columns.append(
{"label": _(period), "fieldname": scrub(period), "fieldtype": "Float", "width": 120}
)
return columns
def get_period_date_ranges(filters):
from dateutil.relativedelta import relativedelta
from_date = round_down_to_nearest_frequency(filters.from_date, filters.range)
to_date = getdate(filters.to_date)
increment = {"Monthly": 1, "Quarterly": 3, "Half-Yearly": 6, "Yearly": 12}.get(filters.range, 1)
periodic_daterange = []
for dummy in range(1, 53, increment):
if filters.range == "Weekly":
period_end_date = from_date + relativedelta(days=6)
else:
period_end_date = from_date + relativedelta(months=increment, days=-1)
if period_end_date > to_date:
period_end_date = to_date
periodic_daterange.append([from_date, period_end_date])
from_date = period_end_date + relativedelta(days=1)
if period_end_date == to_date:
break
return periodic_daterange
def round_down_to_nearest_frequency(date: str, frequency: str) -> datetime.datetime:
"""Rounds down the date to nearest frequency unit.
example:
>>> round_down_to_nearest_frequency("2021-02-21", "Monthly")
datetime.datetime(2021, 2, 1)
>>> round_down_to_nearest_frequency("2021-08-21", "Yearly")
datetime.datetime(2021, 1, 1)
"""
def _get_first_day_of_fiscal_year(date):
fiscal_year = get_fiscal_year(date)
return fiscal_year and fiscal_year[1] or date
round_down_function = {
"Monthly": get_first_day_of_month,
"Quarterly": get_quarter_start,
"Weekly": get_first_day_of_week,
"Yearly": _get_first_day_of_fiscal_year,
}.get(frequency, getdate)
return round_down_function(date)
def get_period(posting_date, filters):
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
if filters.range == "Weekly":
period = "Week " + str(posting_date.isocalendar()[1]) + " " + str(posting_date.year)
elif filters.range == "Monthly":
period = str(months[posting_date.month - 1]) + " " + str(posting_date.year)
elif filters.range == "Quarterly":
period = "Quarter " + str(((posting_date.month - 1) // 3) + 1) + " " + str(posting_date.year)
else:
year = get_fiscal_year(posting_date, company=filters.company)
period = str(year[2])
return period
def get_periodic_data(entry, filters):
"""Structured as:
Item 1
- Balance (updated and carried forward):
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jun 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jul 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
Item 2
- Balance (updated and carried forward):
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jun 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jul 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
"""
periodic_data = {}
for d in entry:
period = get_period(d.posting_date, filters)
bal_qty = 0
# if period against item does not exist yet, instantiate it
# insert existing balance dict against period, and add/subtract to it
if periodic_data.get(d.item_code) and not periodic_data.get(d.item_code).get(period):
previous_balance = periodic_data[d.item_code]["balance"].copy()
periodic_data[d.item_code][period] = previous_balance
if d.voucher_type == "Stock Reconciliation":
if periodic_data.get(d.item_code) and periodic_data.get(d.item_code).get("balance").get(
d.warehouse
):
bal_qty = periodic_data[d.item_code]["balance"][d.warehouse]
qty_diff = d.qty_after_transaction - bal_qty
else:
qty_diff = d.actual_qty
if filters["value_quantity"] == "Quantity":
value = qty_diff
else:
value = d.stock_value_difference
# period-warehouse wise balance
periodic_data.setdefault(d.item_code, {}).setdefault("balance", {}).setdefault(d.warehouse, 0.0)
periodic_data.setdefault(d.item_code, {}).setdefault(period, {}).setdefault(d.warehouse, 0.0)
periodic_data[d.item_code]["balance"][d.warehouse] += value
periodic_data[d.item_code][period][d.warehouse] = periodic_data[d.item_code]["balance"][
d.warehouse
]
return periodic_data
def get_data(filters):
data = []
items = get_items(filters)
sle = get_stock_ledger_entries(filters, items)
item_details = get_item_details(items, sle, filters)
periodic_data = get_periodic_data(sle, filters)
ranges = get_period_date_ranges(filters)
for dummy, item_data in item_details.items():
row = {
"name": item_data.name,
"item_name": item_data.item_name,
"item_group": item_data.item_group,
"uom": item_data.stock_uom,
"brand": item_data.brand,
}
total = 0
for dummy, end_date in ranges:
period = get_period(end_date, filters)
period_data = periodic_data.get(item_data.name, {}).get(period)
amount = sum(period_data.values()) if period_data else 0
row[scrub(period)] = amount
total += amount
row["total"] = total
data.append(row)
return data
def get_chart_data(columns):
labels = [d.get("label") for d in columns[5:]]
chart = {"data": {"labels": labels, "datasets": []}}
chart["type"] = "line"
return chart