102 lines
4.0 KiB
Python
102 lines
4.0 KiB
Python
# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors
|
|
# License: GNU General Public License v3. See license.txt
|
|
|
|
|
|
import frappe
|
|
import pandas as pd
|
|
from frappe import _
|
|
|
|
from erpnext.accounts.report.utils import convert
|
|
|
|
|
|
def validate_filters(from_date, to_date, company):
|
|
if from_date and to_date and (from_date >= to_date):
|
|
frappe.throw(_("To Date must be greater than From Date"))
|
|
|
|
if not company:
|
|
frappe.throw(_("Please Select a Company"))
|
|
|
|
@frappe.whitelist()
|
|
def get_funnel_data(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
active_leads = frappe.db.sql("""select count(*) from `tabLead`
|
|
where (date(`creation`) between %s and %s)
|
|
and company=%s""", (from_date, to_date, company))[0][0]
|
|
|
|
opportunities = frappe.db.sql("""select count(*) from `tabOpportunity`
|
|
where (date(`creation`) between %s and %s)
|
|
and opportunity_from='Lead' and company=%s""", (from_date, to_date, company))[0][0]
|
|
|
|
quotations = frappe.db.sql("""select count(*) from `tabQuotation`
|
|
where docstatus = 1 and (date(`creation`) between %s and %s)
|
|
and (opportunity!="" or quotation_to="Lead") and company=%s""", (from_date, to_date, company))[0][0]
|
|
|
|
converted = frappe.db.sql("""select count(*) from `tabCustomer`
|
|
JOIN `tabLead` ON `tabLead`.name = `tabCustomer`.lead_name
|
|
WHERE (date(`tabCustomer`.creation) between %s and %s)
|
|
and `tabLead`.company=%s""", (from_date, to_date, company))[0][0]
|
|
|
|
|
|
return [
|
|
{ "title": _("Active Leads"), "value": active_leads, "color": "#B03B46" },
|
|
{ "title": _("Opportunities"), "value": opportunities, "color": "#F09C00" },
|
|
{ "title": _("Quotations"), "value": quotations, "color": "#006685" },
|
|
{ "title": _("Converted"), "value": converted, "color": "#00AD65" }
|
|
]
|
|
|
|
@frappe.whitelist()
|
|
def get_opp_by_lead_source(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability', 'source'])
|
|
|
|
if opportunities:
|
|
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
|
|
|
|
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
|
|
|
|
df = pd.DataFrame(cp_opportunities).groupby(['source', 'sales_stage'], as_index=False).agg({'compound_amount': 'sum'})
|
|
|
|
result = {}
|
|
result['labels'] = list(set(df.source.values))
|
|
result['datasets'] = []
|
|
|
|
for s in set(df.sales_stage.values):
|
|
result['datasets'].append({'name': s, 'values': [0]*len(result['labels']), 'chartType': 'bar'})
|
|
|
|
for row in df.itertuples():
|
|
source_index = result['labels'].index(row.source)
|
|
|
|
for dataset in result['datasets']:
|
|
if dataset['name'] == row.sales_stage:
|
|
dataset['values'][source_index] = row.compound_amount
|
|
|
|
return result
|
|
|
|
else:
|
|
return 'empty'
|
|
|
|
@frappe.whitelist()
|
|
def get_pipeline_data(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability'])
|
|
|
|
if opportunities:
|
|
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
|
|
|
|
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
|
|
|
|
df = pd.DataFrame(cp_opportunities).groupby(['sales_stage'], as_index=True).agg({'compound_amount': 'sum'}).to_dict()
|
|
|
|
result = {}
|
|
result['labels'] = df['compound_amount'].keys()
|
|
result['datasets'] = []
|
|
result['datasets'].append({'name': _("Total Amount"), 'values': df['compound_amount'].values(), 'chartType': 'bar'})
|
|
|
|
return result
|
|
|
|
else:
|
|
return 'empty'
|