brotherton-erpnext/erpnext/selling/page/sales_funnel/sales_funnel.py
Anupam Kumar c3984691b3
fix: Sales funnel data is inconsistent (#23110)
* fix: Sales funnel data is inconsistent

* fix: data inconsistency

* fix: Converted Count

Co-authored-by: Marica <maricadsouza221197@gmail.com>
2020-09-02 20:01:14 +05:30

100 lines
4.1 KiB
Python

# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors
# License: GNU General Public License v3. See license.txt
from __future__ import unicode_literals
import frappe
from frappe import _
from erpnext.accounts.report.utils import convert
import pandas as pd
def validate_filters(from_date, to_date, company):
if from_date and to_date and (from_date >= to_date):
frappe.throw(_("To Date must be greater than From Date"))
if not company:
frappe.throw(_("Please Select a Company"))
@frappe.whitelist()
def get_funnel_data(from_date, to_date, company):
validate_filters(from_date, to_date, company)
active_leads = frappe.db.sql("""select count(*) from `tabLead`
where (date(`creation`) between %s and %s)
and company=%s""", (from_date, to_date, company))[0][0]
opportunities = frappe.db.sql("""select count(*) from `tabOpportunity`
where (date(`creation`) between %s and %s)
and opportunity_from='Lead' and company=%s""", (from_date, to_date, company))[0][0]
quotations = frappe.db.sql("""select count(*) from `tabQuotation`
where docstatus = 1 and (date(`creation`) between %s and %s)
and (opportunity!="" or quotation_to="Lead") and company=%s""", (from_date, to_date, company))[0][0]
converted = frappe.db.sql("""select count(*) from `tabCustomer`
JOIN `tabLead` ON `tabLead`.name = `tabCustomer`.lead_name
WHERE (date(`tabCustomer`.creation) between %s and %s)
and `tabLead`.company=%s""", (from_date, to_date, company))[0][0]
return [
{ "title": _("Active Leads"), "value": active_leads, "color": "#B03B46" },
{ "title": _("Opportunities"), "value": opportunities, "color": "#F09C00" },
{ "title": _("Quotations"), "value": quotations, "color": "#006685" },
{ "title": _("Converted"), "value": converted, "color": "#00AD65" }
]
@frappe.whitelist()
def get_opp_by_lead_source(from_date, to_date, company):
validate_filters(from_date, to_date, company)
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability', 'source'])
if opportunities:
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
df = pd.DataFrame(cp_opportunities).groupby(['source', 'sales_stage'], as_index=False).agg({'compound_amount': 'sum'})
result = {}
result['labels'] = list(set(df.source.values))
result['datasets'] = []
for s in set(df.sales_stage.values):
result['datasets'].append({'name': s, 'values': [0]*len(result['labels']), 'chartType': 'bar'})
for row in df.itertuples():
source_index = result['labels'].index(row.source)
for dataset in result['datasets']:
if dataset['name'] == row.sales_stage:
dataset['values'][source_index] = row.compound_amount
return result
else:
return 'empty'
@frappe.whitelist()
def get_pipeline_data(from_date, to_date, company):
validate_filters(from_date, to_date, company)
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability'])
if opportunities:
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
df = pd.DataFrame(cp_opportunities).groupby(['sales_stage'], as_index=True).agg({'compound_amount': 'sum'}).to_dict()
result = {}
result['labels'] = df['compound_amount'].keys()
result['datasets'] = []
result['datasets'].append({'name': _("Total Amount"), 'values': df['compound_amount'].values(), 'chartType': 'bar'})
return result
else:
return 'empty'