2020-05-11 19:23:54 +02:00

438 lines
14 KiB
Python

# coding: utf-8
"""
Provide a report and downloadable CSV according to the German DATEV format.
- Query report showing only the columns that contain data, formatted nicely for
dispay to the user.
- CSV download functionality `download_datev_csv` that provides a CSV file with
all required columns. Used to import the data into the DATEV Software.
"""
from __future__ import unicode_literals
import datetime
import json
import zipfile
import six
import frappe
import pandas as pd
from frappe import _
from csv import QUOTE_NONNUMERIC
from six import BytesIO
from six import string_types
from .datev_constants import DataCategory
from .datev_constants import Transactions
from .datev_constants import DebtorsCreditors
from .datev_constants import AccountNames
from .datev_constants import QUERY_REPORT_COLUMNS
def execute(filters=None):
"""Entry point for frappe."""
validate(filters)
result = get_transactions(filters, as_dict=0)
columns = QUERY_REPORT_COLUMNS
return columns, result
def validate(filters):
"""Make sure all mandatory filters and settings are present."""
if not filters.get('company'):
frappe.throw(_('<b>Company</b> is a mandatory filter.'))
if not filters.get('from_date'):
frappe.throw(_('<b>From Date</b> is a mandatory filter.'))
if not filters.get('to_date'):
frappe.throw(_('<b>To Date</b> is a mandatory filter.'))
try:
frappe.get_doc('DATEV Settings', filters.get('company'))
except frappe.DoesNotExistError:
frappe.throw(_('Please create <b>DATEV Settings</b> for Company <b>{}</b>.').format(filters.get('company')))
def get_transactions(filters, as_dict=1):
"""
Get a list of accounting entries.
Select GL Entries joined with Account and Party Account in order to get the
account numbers. Returns a list of accounting entries.
Arguments:
filters -- dict of filters to be passed to the sql query
as_dict -- return as list of dicts [0,1]
"""
filter_by_voucher = 'AND gl.voucher_type = %(voucher_type)s' if filters.get('voucher_type') else ''
gl_entries = frappe.db.sql("""
SELECT
/* either debit or credit amount; always positive */
case gl.debit when 0 then gl.credit else gl.debit end as 'Umsatz (ohne Soll/Haben-Kz)',
/* 'H' when credit, 'S' when debit */
case gl.debit when 0 then 'H' else 'S' end as 'Soll/Haben-Kennzeichen',
/* account number or, if empty, party account number */
coalesce(acc.account_number, acc_pa.account_number) as 'Konto',
/* against number or, if empty, party against number */
coalesce(acc_against.account_number, acc_against_pa.account_number) as 'Gegenkonto (ohne BU-Schlüssel)',
gl.posting_date as 'Belegdatum',
gl.voucher_no as 'Belegfeld 1',
LEFT(gl.remarks, 60) as 'Buchungstext',
gl.voucher_type as 'Beleginfo - Art 1',
gl.voucher_no as 'Beleginfo - Inhalt 1',
gl.against_voucher_type as 'Beleginfo - Art 2',
gl.against_voucher as 'Beleginfo - Inhalt 2'
FROM `tabGL Entry` gl
/* Statistisches Konto (Debitoren/Kreditoren) */
left join `tabParty Account` pa
on gl.against = pa.parent
and gl.company = pa.company
/* Kontonummer */
left join `tabAccount` acc
on gl.account = acc.name
/* Gegenkonto-Nummer */
left join `tabAccount` acc_against
on gl.against = acc_against.name
/* Statistische Kontonummer */
left join `tabAccount` acc_pa
on pa.account = acc_pa.name
/* Statistische Gegenkonto-Nummer */
left join `tabAccount` acc_against_pa
on pa.account = acc_against_pa.name
WHERE gl.company = %(company)s
AND DATE(gl.posting_date) >= %(from_date)s
AND DATE(gl.posting_date) <= %(to_date)s
{}
ORDER BY 'Belegdatum', gl.voucher_no""".format(filter_by_voucher), filters, as_dict=as_dict)
return gl_entries
def get_customers(filters):
"""
Get a list of Customers.
Arguments:
filters -- dict of filters to be passed to the sql query
"""
return frappe.db.sql("""
SELECT
acc.account_number as 'Konto',
CASE cus.customer_type WHEN 'Company' THEN cus.customer_name ELSE null END as 'Name (Adressatentyp Unternehmen)',
CASE cus.customer_type WHEN 'Individual' THEN con.last_name ELSE null END as 'Name (Adressatentyp natürl. Person)',
CASE cus.customer_type WHEN 'Individual' THEN con.first_name ELSE null END as 'Vorname (Adressatentyp natürl. Person)',
CASE cus.customer_type WHEN 'Individual' THEN '1' WHEN 'Company' THEN '2' ELSE '0' end as 'Adressatentyp',
adr.address_line1 as 'Straße',
adr.pincode as 'Postleitzahl',
adr.city as 'Ort',
UPPER(country.code) as 'Land',
adr.address_line2 as 'Adresszusatz',
con.email_id as 'E-Mail',
coalesce(con.mobile_no, con.phone) as 'Telefon',
cus.website as 'Internet',
cus.tax_id as 'Steuernummer'
FROM `tabParty Account` par
left join `tabAccount` acc
on acc.name = par.account
left join `tabCustomer` cus
on cus.name = par.parent
left join `tabAddress` adr
on adr.name = cus.customer_primary_address
left join `tabCountry` country
on country.name = adr.country
left join `tabContact` con
on con.name = cus.customer_primary_contact
WHERE par.company = %(company)s
AND par.parenttype = 'Customer'""", filters, as_dict=1)
def get_suppliers(filters):
"""
Get a list of Suppliers.
Arguments:
filters -- dict of filters to be passed to the sql query
"""
return frappe.db.sql("""
SELECT
acc.account_number as 'Konto',
CASE sup.supplier_type WHEN 'Company' THEN sup.supplier_name ELSE null END as 'Name (Adressatentyp Unternehmen)',
CASE sup.supplier_type WHEN 'Individual' THEN con.last_name ELSE null END as 'Name (Adressatentyp natürl. Person)',
CASE sup.supplier_type WHEN 'Individual' THEN con.first_name ELSE null END as 'Vorname (Adressatentyp natürl. Person)',
CASE sup.supplier_type WHEN 'Individual' THEN '1' WHEN 'Company' THEN '2' ELSE '0' end as 'Adressatentyp',
adr.address_line1 as 'Straße',
adr.pincode as 'Postleitzahl',
adr.city as 'Ort',
UPPER(country.code) as 'Land',
adr.address_line2 as 'Adresszusatz',
con.email_id as 'E-Mail',
coalesce(con.mobile_no, con.phone) as 'Telefon',
sup.website as 'Internet',
sup.tax_id as 'Steuernummer',
case sup.on_hold when 1 then sup.release_date else null end as 'Zahlungssperre bis'
FROM `tabParty Account` par
left join `tabAccount` acc
on acc.name = par.account
left join `tabSupplier` sup
on sup.name = par.parent
left join `tabDynamic Link` dyn_adr
on dyn_adr.link_name = sup.name
and dyn_adr.link_doctype = 'Supplier'
and dyn_adr.parenttype = 'Address'
left join `tabAddress` adr
on adr.name = dyn_adr.parent
and adr.is_primary_address = '1'
left join `tabCountry` country
on country.name = adr.country
left join `tabDynamic Link` dyn_con
on dyn_con.link_name = sup.name
and dyn_con.link_doctype = 'Supplier'
and dyn_con.parenttype = 'Contact'
left join `tabContact` con
on con.name = dyn_con.parent
and con.is_primary_contact = '1'
WHERE par.company = %(company)s
AND par.parenttype = 'Supplier'""", filters, as_dict=1)
def get_account_names(filters):
return frappe.db.sql("""
SELECT
account_number as 'Konto',
LEFT(account_name, 40) as 'Kontenbeschriftung',
'de-DE' as 'Sprach-ID'
FROM `tabAccount`
WHERE company = %(company)s
AND is_group = 0
AND account_number != ''
""", filters, as_dict=1)
def get_datev_csv(data, filters, csv_class):
"""
Fill in missing columns and return a CSV in DATEV Format.
For automatic processing, DATEV requires the first line of the CSV file to
hold meta data such as the length of account numbers oder the category of
the data.
Arguments:
data -- array of dictionaries
filters -- dict
csv_class -- defines DATA_CATEGORY, FORMAT_NAME and COLUMNS
"""
empty_df = pd.DataFrame(columns=csv_class.COLUMNS)
data_df = pd.DataFrame.from_records(data)
result = empty_df.append(data_df, sort=True)
if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS:
result['Belegdatum'] = pd.to_datetime(result['Belegdatum'])
if csv_class.DATA_CATEGORY == DataCategory.ACCOUNT_NAMES:
result['Sprach-ID'] = 'de-DE'
data = result.to_csv(
# Reason for str(';'): https://github.com/pandas-dev/pandas/issues/6035
sep=str(';'),
# European decimal seperator
decimal=',',
# Windows "ANSI" encoding
encoding='latin_1',
# format date as DDMM
date_format='%d%m',
# Windows line terminator
line_terminator='\r\n',
# Do not number rows
index=False,
# Use all columns defined above
columns=csv_class.COLUMNS,
# Quote most fields, even currency values with "," separator
quoting=QUOTE_NONNUMERIC
)
if not six.PY2:
data = data.encode('latin_1')
header = get_header(filters, csv_class)
header = ';'.join(header).encode('latin_1')
# 1st Row: Header with meta data
# 2nd Row: Data heading (Überschrift der Nutzdaten), included in `data` here.
# 3rd - nth Row: Data (Nutzdaten)
return header + b'\r\n' + data
def get_header(filters, csv_class):
description = filters.get('voucher_type', csv_class.FORMAT_NAME)
header = [
# DATEV format
# "DTVF" = created by DATEV software,
# "EXTF" = created by other software
'"EXTF"',
# version of the DATEV format
# 141 = 1.41,
# 510 = 5.10,
# 720 = 7.20
'700',
csv_class.DATA_CATEGORY,
'"%s"' % csv_class.FORMAT_NAME,
# Format version (regarding format name)
csv_class.FORMAT_VERSION,
# Generated on
datetime.datetime.now().strftime("%Y%m%d%H%M%S") + '000',
# Imported on -- stays empty
'',
# Origin. Any two symbols, will be replaced by "SV" on import.
'"EN"',
# I = Exported by
'"%s"' % frappe.session.user,
# J = Imported by -- stays empty
'',
# K = Tax consultant number (Beraternummer)
filters.get('consultant_number', '0000000'),
# L = Tax client number (Mandantennummer)
filters.get('client_number', '00000'),
# M = Start of the fiscal year (Wirtschaftsjahresbeginn)
frappe.utils.formatdate(frappe.defaults.get_user_default("year_start_date"), "yyyyMMdd"),
# N = Length of account numbers (Sachkontenlänge)
'%d' % filters.get('acc_len', 4),
# O = Transaction batch start date (YYYYMMDD)
frappe.utils.formatdate(filters.get('from_date'), "yyyyMMdd") if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# P = Transaction batch end date (YYYYMMDD)
frappe.utils.formatdate(filters.get('to_date'), "yyyyMMdd") if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# Q = Description (for example, "Sales Invoice") Max. 30 chars
'"{}"'.format(_(description)) if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# R = Diktatkürzel
'',
# S = Buchungstyp
# 1 = Transaction batch (Finanzbuchführung),
# 2 = Annual financial statement (Jahresabschluss)
'1' if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# T = Rechnungslegungszweck
# 0 oder leer = vom Rechnungslegungszweck unabhängig
# 50 = Handelsrecht
# 30 = Steuerrecht
# 64 = IFRS
# 40 = Kalkulatorik
# 11 = Reserviert
# 12 = Reserviert
'0' if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# U = Festschreibung
# TODO: Filter by Accounting Period. In export for closed Accounting Period, this will be "1"
'0',
# V = Default currency, for example, "EUR"
'"%s"' % filters.get('default_currency', 'EUR') if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else '',
# reserviert
'',
# Derivatskennzeichen
'',
# reserviert
'',
# reserviert
'',
# SKR
'"%s"' % filters.get('skr', '04'),
# Branchen-Lösungs-ID
'',
# reserviert
'',
# reserviert
'',
# Anwendungsinformation (Verarbeitungskennzeichen der abgebenden Anwendung)
''
]
return header
@frappe.whitelist()
def download_datev_csv(filters=None):
"""
Provide accounting entries for download in DATEV format.
Validate the filters, get the data, produce the CSV file and provide it for
download. Can be called like this:
GET /api/method/erpnext.regional.report.datev.datev.download_datev_csv
Arguments / Params:
filters -- dict of filters to be passed to the sql query
"""
if isinstance(filters, string_types):
filters = json.loads(filters)
validate(filters)
# set chart of accounts used
coa = frappe.get_value('Company', filters.get('company'), 'chart_of_accounts')
filters['skr'] = '04' if 'SKR04' in coa else ('03' if 'SKR03' in coa else '')
# set account number length
account_numbers = frappe.get_list('Account', fields=['account_number'], filters={'is_group': 0, 'account_number': ('!=', '')})
filters['acc_len'] = max([len(a.account_number) for a in account_numbers])
filters['consultant_number'] = frappe.get_value('DATEV Settings', filters.get('company'), 'consultant_number')
filters['client_number'] = frappe.get_value('DATEV Settings', filters.get('company'), 'client_number')
filters['default_currency'] = frappe.get_value('Company', filters.get('company'), 'default_currency')
# This is where my zip will be written
zip_buffer = BytesIO()
# This is my zip file
datev_zip = zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED)
transactions = get_transactions(filters)
transactions_csv = get_datev_csv(transactions, filters, csv_class=Transactions)
datev_zip.writestr('EXTF_Buchungsstapel.csv', transactions_csv)
account_names = get_account_names(filters)
account_names_csv = get_datev_csv(account_names, filters, csv_class=AccountNames)
datev_zip.writestr('EXTF_Kontenbeschriftungen.csv', account_names_csv)
customers = get_customers(filters)
customers_csv = get_datev_csv(customers, filters, csv_class=DebtorsCreditors)
datev_zip.writestr('EXTF_Kunden.csv', customers_csv)
suppliers = get_suppliers(filters)
suppliers_csv = get_datev_csv(suppliers, filters, csv_class=DebtorsCreditors)
datev_zip.writestr('EXTF_Lieferanten.csv', suppliers_csv)
# You must call close() before exiting your program or essential records will not be written.
datev_zip.close()
frappe.response['filecontent'] = zip_buffer.getvalue()
frappe.response['filename'] = 'DATEV.zip'
frappe.response['type'] = 'binary'