169 lines
4.3 KiB
Python
169 lines
4.3 KiB
Python
# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors
|
|
# License: GNU General Public License v3. See license.txt
|
|
|
|
|
|
import frappe
|
|
import pandas as pd
|
|
from frappe import _
|
|
|
|
from erpnext.accounts.report.utils import convert
|
|
|
|
|
|
def validate_filters(from_date, to_date, company):
|
|
if from_date and to_date and (from_date >= to_date):
|
|
frappe.throw(_("To Date must be greater than From Date"))
|
|
|
|
if not company:
|
|
frappe.throw(_("Please Select a Company"))
|
|
|
|
|
|
@frappe.whitelist()
|
|
def get_funnel_data(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
active_leads = frappe.db.sql(
|
|
"""select count(*) from `tabLead`
|
|
where (date(`creation`) between %s and %s)
|
|
and company=%s""",
|
|
(from_date, to_date, company),
|
|
)[0][0]
|
|
|
|
opportunities = frappe.db.sql(
|
|
"""select count(*) from `tabOpportunity`
|
|
where (date(`creation`) between %s and %s)
|
|
and opportunity_from='Lead' and company=%s""",
|
|
(from_date, to_date, company),
|
|
)[0][0]
|
|
|
|
quotations = frappe.db.sql(
|
|
"""select count(*) from `tabQuotation`
|
|
where docstatus = 1 and (date(`creation`) between %s and %s)
|
|
and (opportunity!="" or quotation_to="Lead") and company=%s""",
|
|
(from_date, to_date, company),
|
|
)[0][0]
|
|
|
|
converted = frappe.db.sql(
|
|
"""select count(*) from `tabCustomer`
|
|
JOIN `tabLead` ON `tabLead`.name = `tabCustomer`.lead_name
|
|
WHERE (date(`tabCustomer`.creation) between %s and %s)
|
|
and `tabLead`.company=%s""",
|
|
(from_date, to_date, company),
|
|
)[0][0]
|
|
|
|
return [
|
|
{"title": _("Active Leads"), "value": active_leads, "color": "#B03B46"},
|
|
{"title": _("Opportunities"), "value": opportunities, "color": "#F09C00"},
|
|
{"title": _("Quotations"), "value": quotations, "color": "#006685"},
|
|
{"title": _("Converted"), "value": converted, "color": "#00AD65"},
|
|
]
|
|
|
|
|
|
@frappe.whitelist()
|
|
def get_opp_by_lead_source(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
opportunities = frappe.get_all(
|
|
"Opportunity",
|
|
filters=[
|
|
["status", "in", ["Open", "Quotation", "Replied"]],
|
|
["company", "=", company],
|
|
["transaction_date", "Between", [from_date, to_date]],
|
|
],
|
|
fields=["currency", "sales_stage", "opportunity_amount", "probability", "source"],
|
|
)
|
|
|
|
if opportunities:
|
|
default_currency = frappe.get_cached_value("Global Defaults", "None", "default_currency")
|
|
|
|
cp_opportunities = [
|
|
dict(
|
|
x,
|
|
**{
|
|
"compound_amount": (
|
|
convert(x["opportunity_amount"], x["currency"], default_currency, to_date)
|
|
* x["probability"]
|
|
/ 100
|
|
)
|
|
}
|
|
)
|
|
for x in opportunities
|
|
]
|
|
|
|
df = (
|
|
pd.DataFrame(cp_opportunities)
|
|
.groupby(["source", "sales_stage"], as_index=False)
|
|
.agg({"compound_amount": "sum"})
|
|
)
|
|
|
|
result = {}
|
|
result["labels"] = list(set(df.source.values))
|
|
result["datasets"] = []
|
|
|
|
for s in set(df.sales_stage.values):
|
|
result["datasets"].append(
|
|
{"name": s, "values": [0] * len(result["labels"]), "chartType": "bar"}
|
|
)
|
|
|
|
for row in df.itertuples():
|
|
source_index = result["labels"].index(row.source)
|
|
|
|
for dataset in result["datasets"]:
|
|
if dataset["name"] == row.sales_stage:
|
|
dataset["values"][source_index] = row.compound_amount
|
|
|
|
return result
|
|
|
|
else:
|
|
return "empty"
|
|
|
|
|
|
@frappe.whitelist()
|
|
def get_pipeline_data(from_date, to_date, company):
|
|
validate_filters(from_date, to_date, company)
|
|
|
|
opportunities = frappe.get_all(
|
|
"Opportunity",
|
|
filters=[
|
|
["status", "in", ["Open", "Quotation", "Replied"]],
|
|
["company", "=", company],
|
|
["transaction_date", "Between", [from_date, to_date]],
|
|
],
|
|
fields=["currency", "sales_stage", "opportunity_amount", "probability"],
|
|
)
|
|
|
|
if opportunities:
|
|
default_currency = frappe.get_cached_value("Global Defaults", "None", "default_currency")
|
|
|
|
cp_opportunities = [
|
|
dict(
|
|
x,
|
|
**{
|
|
"compound_amount": (
|
|
convert(x["opportunity_amount"], x["currency"], default_currency, to_date)
|
|
* x["probability"]
|
|
/ 100
|
|
)
|
|
}
|
|
)
|
|
for x in opportunities
|
|
]
|
|
|
|
df = (
|
|
pd.DataFrame(cp_opportunities)
|
|
.groupby(["sales_stage"], as_index=True)
|
|
.agg({"compound_amount": "sum"})
|
|
.to_dict()
|
|
)
|
|
|
|
result = {}
|
|
result["labels"] = df["compound_amount"].keys()
|
|
result["datasets"] = []
|
|
result["datasets"].append(
|
|
{"name": _("Total Amount"), "values": df["compound_amount"].values(), "chartType": "bar"}
|
|
)
|
|
|
|
return result
|
|
|
|
else:
|
|
return "empty"
|