brotherton-erpnext/erpnext/regional/report/datev/datev.py
Raffael Meyer 0de066c3b1 feat(regional): Add master data to DATEV Export (#18755)
* Add master data to export

* add SQL statements to get customers and suppliers

* make data category a string

* fix SQL error

* fix SQL errors

* unique column names

* add encoding of constants

* get customer primary address and contact

* fix typo

* fix typo

* binary response

* add filename

* add filecontent

* rename account columns

* exclude account groups

* use compression, close file before transfer

* fix StringIO

* add basic tests

* fix assertion, merge test methods

* fix indentation

* relative import of constants

* fix path

* import os

* Add default currency to test company

* root accounts with parent = null

* move account-related things to setup()

* add: test headers

* company and filters become class properties

* add: test csv creation

* (fix): add missing account

* (fix): remove wrong space

* add items to sales invoice

* refactor: create test data

* fix: create cost center

* fix: doctype Accoutn

* fix: make sure account belongs to company

* fix: remove customer group and territory, save on a new line

* create default warehouses

* fix: make Item myself

* fix: item defaults are a list

* fix: use my own warehouse

* fix: use my own expense account

* fix: let you take care of the Sales Invoice Item

* fix: import zipfile

* add TODOs

* fix: workaround for pandas bug

* SQL: utf-8 everywhere to make conversion in tests unnecessary

* tests: zipfile must be encoded string

* fix(tests): invalid start byte

* fix(test): give is_zipfile() the file-like object it expects

* fix(test): fix encoding of colums

* fix(get_transactions): as_dict is 1 by default

* fix(tests): allow empty data

* refactor: rename columns in get_account_names

* fix(pandas): keep sorting columns

* fix: "lineterminator" must be a string

* fix(test): check if cost center exists

* fix: credit limit became a child table

* fix: save company after creation

* insert instead of save

* tests: setup_fiscal_year

* fix(test): import cstr

* fix(tests): fiscal year

* fix: can't concat str to bytes

* fix: make csv-encoding work for py2 and py3

* fix(test): use frappe.as_unicode instead of unicode

* fix: use BytesIO instead of StringIO for py3 compatibility

* fix(tests): use BytesIO instead of StringIO for py3 compatibility
2019-11-29 17:32:17 +05:30

386 lines
11 KiB
Python

# coding: utf-8
"""
Provide a report and downloadable CSV according to the German DATEV format.
- Query report showing only the columns that contain data, formatted nicely for
dispay to the user.
- CSV download functionality `download_datev_csv` that provides a CSV file with
all required columns. Used to import the data into the DATEV Software.
"""
from __future__ import unicode_literals
import datetime
import json
import zlib
import zipfile
import six
from six import BytesIO
from six import string_types
import frappe
from frappe import _
import pandas as pd
from .datev_constants import DataCategory
from .datev_constants import Transactions
from .datev_constants import DebtorsCreditors
from .datev_constants import AccountNames
from .datev_constants import QUERY_REPORT_COLUMNS
def execute(filters=None):
"""Entry point for frappe."""
validate(filters)
result = get_transactions(filters, as_dict=0)
columns = QUERY_REPORT_COLUMNS
return columns, result
def validate(filters):
"""Make sure all mandatory filters and settings are present."""
if not filters.get('company'):
frappe.throw(_('<b>Company</b> is a mandatory filter.'))
if not filters.get('from_date'):
frappe.throw(_('<b>From Date</b> is a mandatory filter.'))
if not filters.get('to_date'):
frappe.throw(_('<b>To Date</b> is a mandatory filter.'))
try:
frappe.get_doc('DATEV Settings', filters.get('company'))
except frappe.DoesNotExistError:
frappe.throw(_('Please create <b>DATEV Settings</b> for Company <b>{}</b>.').format(filters.get('company')))
def get_transactions(filters, as_dict=1):
"""
Get a list of accounting entries.
Select GL Entries joined with Account and Party Account in order to get the
account numbers. Returns a list of accounting entries.
Arguments:
filters -- dict of filters to be passed to the sql query
as_dict -- return as list of dicts [0,1]
"""
gl_entries = frappe.db.sql("""
SELECT
/* either debit or credit amount; always positive */
case gl.debit when 0 then gl.credit else gl.debit end as 'Umsatz (ohne Soll/Haben-Kz)',
/* 'H' when credit, 'S' when debit */
case gl.debit when 0 then 'H' else 'S' end as 'Soll/Haben-Kennzeichen',
/* account number or, if empty, party account number */
coalesce(acc.account_number, acc_pa.account_number) as 'Kontonummer',
/* against number or, if empty, party against number */
coalesce(acc_against.account_number, acc_against_pa.account_number) as 'Gegenkonto (ohne BU-Schlüssel)',
gl.posting_date as 'Belegdatum',
gl.remarks as 'Buchungstext',
gl.voucher_type as 'Beleginfo - Art 1',
gl.voucher_no as 'Beleginfo - Inhalt 1',
gl.against_voucher_type as 'Beleginfo - Art 2',
gl.against_voucher as 'Beleginfo - Inhalt 2'
FROM `tabGL Entry` gl
/* Statistisches Konto (Debitoren/Kreditoren) */
left join `tabParty Account` pa
on gl.against = pa.parent
and gl.company = pa.company
/* Kontonummer */
left join `tabAccount` acc
on gl.account = acc.name
/* Gegenkonto-Nummer */
left join `tabAccount` acc_against
on gl.against = acc_against.name
/* Statistische Kontonummer */
left join `tabAccount` acc_pa
on pa.account = acc_pa.name
/* Statistische Gegenkonto-Nummer */
left join `tabAccount` acc_against_pa
on pa.account = acc_against_pa.name
WHERE gl.company = %(company)s
AND DATE(gl.posting_date) >= %(from_date)s
AND DATE(gl.posting_date) <= %(to_date)s
ORDER BY 'Belegdatum', gl.voucher_no""", filters, as_dict=as_dict, as_utf8=1)
return gl_entries
def get_customers(filters):
"""
Get a list of Customers.
Arguments:
filters -- dict of filters to be passed to the sql query
"""
return frappe.db.sql("""
SELECT
acc.account_number as 'Konto',
cus.customer_name as 'Name (Adressatentyp Unternehmen)',
case cus.customer_type when 'Individual' then 1 when 'Company' then 2 else 0 end as 'Adressatentyp',
adr.address_line1 as 'Straße',
adr.pincode as 'Postleitzahl',
adr.city as 'Ort',
UPPER(country.code) as 'Land',
adr.address_line2 as 'Adresszusatz',
con.email_id as 'E-Mail',
coalesce(con.mobile_no, con.phone) as 'Telefon',
cus.website as 'Internet',
cus.tax_id as 'Steuernummer',
ccl.credit_limit as 'Kreditlimit (Debitor)'
FROM `tabParty Account` par
left join `tabAccount` acc
on acc.name = par.account
left join `tabCustomer` cus
on cus.name = par.parent
left join `tabAddress` adr
on adr.name = cus.customer_primary_address
left join `tabCountry` country
on country.name = adr.country
left join `tabContact` con
on con.name = cus.customer_primary_contact
left join `tabCustomer Credit Limit` ccl
on ccl.parent = cus.name
and ccl.company = par.company
WHERE par.company = %(company)s
AND par.parenttype = 'Customer'""", filters, as_dict=1, as_utf8=1)
def get_suppliers(filters):
"""
Get a list of Suppliers.
Arguments:
filters -- dict of filters to be passed to the sql query
"""
return frappe.db.sql("""
SELECT
acc.account_number as 'Konto',
sup.supplier_name as 'Name (Adressatentyp Unternehmen)',
case sup.supplier_type when 'Individual' then '1' when 'Company' then '2' else '0' end as 'Adressatentyp',
adr.address_line1 as 'Straße',
adr.pincode as 'Postleitzahl',
adr.city as 'Ort',
UPPER(country.code) as 'Land',
adr.address_line2 as 'Adresszusatz',
con.email_id as 'E-Mail',
coalesce(con.mobile_no, con.phone) as 'Telefon',
sup.website as 'Internet',
sup.tax_id as 'Steuernummer',
case sup.on_hold when 1 then sup.release_date else null end as 'Zahlungssperre bis'
FROM `tabParty Account` par
left join `tabAccount` acc
on acc.name = par.account
left join `tabSupplier` sup
on sup.name = par.parent
left join `tabDynamic Link` dyn_adr
on dyn_adr.link_name = sup.name
and dyn_adr.link_doctype = 'Supplier'
and dyn_adr.parenttype = 'Address'
left join `tabAddress` adr
on adr.name = dyn_adr.parent
and adr.is_primary_address = '1'
left join `tabCountry` country
on country.name = adr.country
left join `tabDynamic Link` dyn_con
on dyn_con.link_name = sup.name
and dyn_con.link_doctype = 'Supplier'
and dyn_con.parenttype = 'Contact'
left join `tabContact` con
on con.name = dyn_con.parent
and con.is_primary_contact = '1'
WHERE par.company = %(company)s
AND par.parenttype = 'Supplier'""", filters, as_dict=1, as_utf8=1)
def get_account_names(filters):
return frappe.get_list("Account",
fields=["account_number as Konto", "name as Kontenbeschriftung"],
filters={"company": filters.get("company"), "is_group": "0"})
def get_datev_csv(data, filters, csv_class):
"""
Fill in missing columns and return a CSV in DATEV Format.
For automatic processing, DATEV requires the first line of the CSV file to
hold meta data such as the length of account numbers oder the category of
the data.
Arguments:
data -- array of dictionaries
filters -- dict
csv_class -- defines DATA_CATEGORY, FORMAT_NAME and COLUMNS
"""
header = get_header(filters, csv_class)
empty_df = pd.DataFrame(columns=csv_class.COLUMNS)
data_df = pd.DataFrame.from_records(data)
result = empty_df.append(data_df, sort=True)
if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS:
result['Belegdatum'] = pd.to_datetime(result['Belegdatum'])
if csv_class.DATA_CATEGORY == DataCategory.ACCOUNT_NAMES:
result['Sprach-ID'] = 'de-DE'
header = ';'.join(header).encode('latin_1')
data = result.to_csv(
# Reason for str(';'): https://github.com/pandas-dev/pandas/issues/6035
sep=str(';'),
# European decimal seperator
decimal=',',
# Windows "ANSI" encoding
encoding='latin_1',
# format date as DDMM
date_format='%d%m',
# Windows line terminator
line_terminator='\r\n',
# Do not number rows
index=False,
# Use all columns defined above
columns=csv_class.COLUMNS
)
if not six.PY2:
data = data.encode('latin_1')
return header + b'\r\n' + data
def get_header(filters, csv_class):
header = [
# A = DATEV format
# DTVF = created by DATEV software,
# EXTF = created by other software
"EXTF",
# B = version of the DATEV format
# 141 = 1.41,
# 510 = 5.10,
# 720 = 7.20
"510",
csv_class.DATA_CATEGORY,
csv_class.FORMAT_NAME,
# E = Format version (regarding format name)
"",
# F = Generated on
datetime.datetime.now().strftime("%Y%m%d"),
# G = Imported on -- stays empty
"",
# H = Origin (SV = other (?), RE = KARE)
"SV",
# I = Exported by
frappe.session.user,
# J = Imported by -- stays empty
"",
# K = Tax consultant number (Beraternummer)
frappe.get_value("DATEV Settings", filters.get("company"), "consultant_number") or "",
"",
# L = Tax client number (Mandantennummer)
frappe.get_value("DATEV Settings", filters.get("company"), "client_number") or "",
"",
# M = Start of the fiscal year (Wirtschaftsjahresbeginn)
frappe.utils.formatdate(frappe.defaults.get_user_default("year_start_date"), "yyyyMMdd"),
# N = Length of account numbers (Sachkontenlänge)
"4",
# O = Transaction batch start date (YYYYMMDD)
frappe.utils.formatdate(filters.get('from_date'), "yyyyMMdd"),
# P = Transaction batch end date (YYYYMMDD)
frappe.utils.formatdate(filters.get('to_date'), "yyyyMMdd"),
# Q = Description (for example, "January - February 2019 Transactions")
"{} - {} {}".format(
frappe.utils.formatdate(filters.get('from_date'), "MMMM yyyy"),
frappe.utils.formatdate(filters.get('to_date'), "MMMM yyyy"),
csv_class.FORMAT_NAME
),
# R = Diktatkürzel
"",
# S = Buchungstyp
# 1 = Transaction batch (Buchungsstapel),
# 2 = Annual financial statement (Jahresabschluss)
"1" if csv_class.DATA_CATEGORY == DataCategory.TRANSACTIONS else "",
# T = Rechnungslegungszweck
"",
# U = Festschreibung
"",
# V = Kontoführungs-Währungskennzeichen des Geldkontos
frappe.get_value("Company", filters.get("company"), "default_currency")
]
return header
@frappe.whitelist()
def download_datev_csv(filters=None):
"""
Provide accounting entries for download in DATEV format.
Validate the filters, get the data, produce the CSV file and provide it for
download. Can be called like this:
GET /api/method/erpnext.regional.report.datev.datev.download_datev_csv
Arguments / Params:
filters -- dict of filters to be passed to the sql query
"""
if isinstance(filters, string_types):
filters = json.loads(filters)
validate(filters)
# This is where my zip will be written
zip_buffer = BytesIO()
# This is my zip file
datev_zip = zipfile.ZipFile(zip_buffer, mode='w', compression=zipfile.ZIP_DEFLATED)
transactions = get_transactions(filters)
transactions_csv = get_datev_csv(transactions, filters, csv_class=Transactions)
datev_zip.writestr('EXTF_Buchungsstapel.csv', transactions_csv)
account_names = get_account_names(filters)
account_names_csv = get_datev_csv(account_names, filters, csv_class=AccountNames)
datev_zip.writestr('EXTF_Kontenbeschriftungen.csv', account_names_csv)
customers = get_customers(filters)
customers_csv = get_datev_csv(customers, filters, csv_class=DebtorsCreditors)
datev_zip.writestr('EXTF_Kunden.csv', customers_csv)
suppliers = get_suppliers(filters)
suppliers_csv = get_datev_csv(suppliers, filters, csv_class=DebtorsCreditors)
datev_zip.writestr('EXTF_Lieferanten.csv', suppliers_csv)
# You must call close() before exiting your program or essential records will not be written.
datev_zip.close()
frappe.response['filecontent'] = zip_buffer.getvalue()
frappe.response['filename'] = 'DATEV.zip'
frappe.response['type'] = 'binary'