Merge pull request #21724 from rohitwaghchaure/production-forecasting

feat: production forecasting using exponential smoothing method
This commit is contained in:
rohitwaghchaure 2020-05-20 12:30:56 +05:30 committed by GitHub
commit df78e29957
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 384 additions and 8 deletions

View File

@ -19,7 +19,7 @@ from six import itervalues
from erpnext.accounts.doctype.accounting_dimension.accounting_dimension import get_accounting_dimensions, get_dimension_with_children
def get_period_list(from_fiscal_year, to_fiscal_year, period_start_date, period_end_date, filter_based_on, periodicity, accumulated_values=False,
company=None, reset_period_on_fy_change=True):
company=None, reset_period_on_fy_change=True, ignore_fiscal_year=False):
"""Get a list of dict {"from_date": from_date, "to_date": to_date, "key": key, "label": label}
Periodicity can be (Yearly, Quarterly, Monthly)"""
@ -67,8 +67,9 @@ def get_period_list(from_fiscal_year, to_fiscal_year, period_start_date, period_
# if a fiscal year ends before a 12 month period
period.to_date = year_end_date
period.to_date_fiscal_year = get_fiscal_year(period.to_date, company=company)[0]
period.from_date_fiscal_year_start_date = get_fiscal_year(period.from_date, company=company)[1]
if not ignore_fiscal_year:
period.to_date_fiscal_year = get_fiscal_year(period.to_date, company=company)[0]
period.from_date_fiscal_year_start_date = get_fiscal_year(period.from_date, company=company)[1]
period_list.append(period)

View File

@ -43,10 +43,11 @@
"docstatus": 0,
"doctype": "Desk Page",
"extends_another_page": 0,
"hide_custom": 0,
"idx": 0,
"is_standard": 1,
"label": "Manufacturing",
"modified": "2020-05-19 14:05:59.100891",
"modified": "2020-05-20 11:50:20.029056",
"modified_by": "Administrator",
"module": "Manufacturing",
"name": "Manufacturing",
@ -88,6 +89,17 @@
"stats_filter": "{ \n \"status\": [\"not in\", [\"Completed\"]]\n}",
"type": "DocType"
},
{
"label": "Dashboard",
"link_to": "Manufacturing",
"restrict_to_domain": "Manufacturing",
"type": "Dashboard"
},
{
"label": "Forecasting",
"link_to": "Exponential Smoothing Forecasting",
"type": "Report"
},
{
"label": "Work Order Summary",
"link_to": "Work Order Summary",
@ -95,10 +107,14 @@
"type": "Report"
},
{
"label": "Dashboard",
"link_to": "Manufacturing",
"restrict_to_domain": "Manufacturing",
"type": "Dashboard"
"label": "BOM Stock Report",
"link_to": "BOM Stock Report",
"type": "Report"
},
{
"label": "Production Planning Report",
"link_to": "Production Planning Report",
"type": "Report"
}
]
}

View File

@ -0,0 +1,97 @@
// Copyright (c) 2016, Frappe Technologies Pvt. Ltd. and contributors
// For license information, please see license.txt
/* eslint-disable */
frappe.query_reports["Exponential Smoothing Forecasting"] = {
"filters": [
{
"fieldname":"company",
"label": __("Company"),
"fieldtype": "Link",
"options": "Company",
"reqd": 1,
"default": frappe.defaults.get_user_default("Company")
},
{
"fieldname":"from_date",
"label": __("From Date"),
"fieldtype": "Date",
"default": frappe.datetime.get_today(),
"reqd": 1
},
{
"fieldname":"to_date",
"label": __("To Date"),
"fieldtype": "Date",
"default": frappe.datetime.add_months(frappe.datetime.get_today(), 12),
"reqd": 1
},
{
"fieldname":"based_on_document",
"label": __("Based On Document"),
"fieldtype": "Select",
"options": ["Sales Order", "Delivery Note", "Quotation"],
"default": "Sales Order",
"reqd": 1
},
{
"fieldname":"based_on_field",
"label": __("Based On"),
"fieldtype": "Select",
"options": ["Qty", "Amount"],
"default": "Qty",
"reqd": 1
},
{
"fieldname":"no_of_years",
"label": __("Based On Data ( in years )"),
"fieldtype": "Select",
"options": [3, 6, 9],
"default": 3,
"reqd": 1
},
{
"fieldname": "periodicity",
"label": __("Periodicity"),
"fieldtype": "Select",
"options": [
{ "value": "Monthly", "label": __("Monthly") },
{ "value": "Quarterly", "label": __("Quarterly") },
{ "value": "Half-Yearly", "label": __("Half-Yearly") },
{ "value": "Yearly", "label": __("Yearly") }
],
"default": "Yearly",
"reqd": 1
},
{
"fieldname":"smoothing_constant",
"label": __("Smoothing Constant"),
"fieldtype": "Select",
"options": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
"reqd": 1,
"default": 0.3
},
{
"fieldname":"item_code",
"label": __("Item Code"),
"fieldtype": "Link",
"options": "Item"
},
{
"fieldname":"warehouse",
"label": __("Warehouse"),
"fieldtype": "Link",
"options": "Warehouse",
get_query: () => {
var company = frappe.query_report.get_filter_value('company');
if (company) {
return {
filters: {
'company': company
}
};
}
}
}
]
};

View File

@ -0,0 +1,40 @@
{
"add_total_row": 0,
"creation": "2020-05-15 05:18:55.838030",
"disable_prepared_report": 0,
"disabled": 0,
"docstatus": 0,
"doctype": "Report",
"idx": 0,
"is_standard": "Yes",
"letter_head": "",
"modified": "2020-05-15 05:18:55.838030",
"modified_by": "Administrator",
"module": "Manufacturing",
"name": "Exponential Smoothing Forecasting",
"owner": "Administrator",
"prepared_report": 0,
"ref_doctype": "Sales Order",
"report_name": "Exponential Smoothing Forecasting",
"report_type": "Script Report",
"roles": [
{
"role": "Manufacturing User"
},
{
"role": "Stock User"
},
{
"role": "Manufacturing Manager"
},
{
"role": "Stock Manager"
},
{
"role": "Sales Manager"
},
{
"role": "Sales User"
}
]
}

View File

@ -0,0 +1,222 @@
# Copyright (c) 2020, Frappe Technologies Pvt. Ltd. and contributors
# For license information, please see license.txt
from __future__ import unicode_literals
import frappe, erpnext
from frappe import _
from frappe.utils import flt, nowdate, add_years, cint, getdate
from erpnext.accounts.report.financial_statements import get_period_list
from erpnext.stock.doctype.warehouse.warehouse import get_child_warehouses
def execute(filters=None):
return ForecastingReport(filters).execute_report()
class ExponentialSmoothingForecast(object):
def forecast_future_data(self):
for key, value in self.period_wise_data.items():
forecast_data = []
for period in self.period_list:
forecast_key = "forecast_" + period.key
if value.get(period.key) and not forecast_data:
value[forecast_key] = flt(value.get("avg", 0)) or flt(value.get(period.key))
# will be use to forecaset next period
forecast_data.append([value.get(period.key), value.get(forecast_key)])
elif forecast_data:
previous_period_data = forecast_data[-1]
value[forecast_key] = (previous_period_data[1] +
flt(self.filters.smoothing_constant) * (
flt(previous_period_data[0]) - flt(previous_period_data[1])
)
)
class ForecastingReport(ExponentialSmoothingForecast):
def __init__(self, filters=None):
self.filters = frappe._dict(filters or {})
self.data = []
self.doctype = self.filters.based_on_document
self.child_doctype = self.doctype + " Item"
self.based_on_field = ("qty"
if self.filters.based_on_field == "Qty" else "amount")
self.fieldtype = "Float" if self.based_on_field == "qty" else "Currency"
self.company_currency = erpnext.get_company_currency(self.filters.company)
def execute_report(self):
self.prepare_periodical_data()
self.forecast_future_data()
self.data = self.period_wise_data.values()
self.add_total()
columns = self.get_columns()
charts = self.get_chart_data()
summary_data = self.get_summary_data()
return columns, self.data, None, charts, summary_data
def prepare_periodical_data(self):
self.period_wise_data = {}
from_date = add_years(self.filters.from_date, cint(self.filters.no_of_years) * -1)
self.period_list = get_period_list(from_date, self.filters.to_date,
from_date, self.filters.to_date, None, self.filters.periodicity, ignore_fiscal_year=True)
order_data = self.get_data_for_forecast() or []
for entry in order_data:
key = (entry.item_code, entry.warehouse)
if key not in self.period_wise_data:
self.period_wise_data[key] = entry
period_data = self.period_wise_data[key]
for period in self.period_list:
# check if posting date is within the period
if (entry.posting_date >= period.from_date and entry.posting_date <= period.to_date):
period_data[period.key] = period_data.get(period.key, 0.0) + flt(entry.get(self.based_on_field))
for key, value in self.period_wise_data.items():
list_of_period_value = [value.get(p.key, 0) for p in self.period_list]
if list_of_period_value:
value["avg"] = sum(list_of_period_value) / len(list_of_period_value)
def get_data_for_forecast(self):
cond = ""
if self.filters.item_code:
cond = " AND soi.item_code = %s" %(frappe.db.escape(self.filters.item_code))
warehouses = []
if self.filters.warehouse:
warehouses = get_child_warehouses(self.filters.warehouse)
cond += " AND soi.warehouse in ({})".format(','.join(['%s'] * len(warehouses)))
input_data = [self.filters.from_date, self.filters.company]
if warehouses:
input_data.extend(warehouses)
date_field = "posting_date" if self.doctype == "Delivery Note" else "transaction_date"
return frappe.db.sql("""
SELECT
so.{date_field} as posting_date, soi.item_code, soi.warehouse,
soi.item_name, soi.stock_qty as qty, soi.base_amount as amount
FROM
`tab{doc}` so, `tab{child_doc}` soi
WHERE
so.docstatus = 1 AND so.name = soi.parent AND
so.{date_field} < %s AND so.company = %s {cond}
""".format(doc=self.doctype, child_doc=self.child_doctype, date_field=date_field, cond=cond),
tuple(input_data), as_dict=1)
def add_total(self):
total_row = {
"item_code": _(frappe.bold("Total Quantity"))
}
for value in self.data:
for period in self.period_list:
forecast_key = "forecast_" + period.key
if forecast_key not in total_row:
total_row.setdefault(forecast_key, 0.0)
if period.key not in total_row:
total_row.setdefault(period.key, 0.0)
total_row[forecast_key] += value.get(forecast_key, 0.0)
total_row[period.key] += value.get(period.key, 0.0)
self.data.append(total_row)
def get_columns(self):
columns = [{
"label": _("Item Code"),
"options": "Item",
"fieldname": "item_code",
"fieldtype": "Link",
"width": 130
}, {
"label": _("Warehouse"),
"options": "Warehouse",
"fieldname": "warehouse",
"fieldtype": "Link",
"width": 130
}]
width = 150 if self.filters.periodicity in ['Yearly', "Half-Yearly", "Quarterly"] else 100
for period in self.period_list:
if (self.filters.periodicity in ['Yearly', "Half-Yearly", "Quarterly"]
or period.from_date >= getdate(self.filters.from_date)):
forecast_key = 'forecast_' + period.key
columns.append({
"label": _(period.label),
"fieldname": forecast_key,
"fieldtype": self.fieldtype,
"width": width,
"default": 0.0
})
return columns
def get_chart_data(self):
if not self.data: return
labels = []
self.total_demand = []
self.total_forecast = []
self.total_history_forecast = []
self.total_future_forecast = []
for period in self.period_list:
forecast_key = "forecast_" + period.key
labels.append(_(period.label))
if period.from_date < getdate(self.filters.from_date):
self.total_demand.append(self.data[-1].get(period.key, 0))
self.total_history_forecast.append(self.data[-1].get(forecast_key, 0))
else:
self.total_future_forecast.append(self.data[-1].get(forecast_key, 0))
self.total_forecast.append(self.data[-1].get(forecast_key, 0))
return {
"data": {
"labels": labels,
"datasets": [
{
"name": "Demand",
"values": self.total_demand
},
{
"name": "Forecast",
"values": self.total_forecast
}
]
},
"type": "line"
}
def get_summary_data(self):
return [
{
"value": sum(self.total_demand),
"label": _("Total Demand (Past Data)"),
"currency": self.company_currency,
"datatype": self.fieldtype
},
{
"value": sum(self.total_history_forecast),
"label": _("Total Forecast (Past Data)"),
"currency": self.company_currency,
"datatype": self.fieldtype
},
{
"value": sum(self.total_future_forecast),
"indicator": "Green",
"label": _("Total Forecast (Future Data)"),
"currency": self.company_currency,
"datatype": self.fieldtype
}
]