88 lines
3.9 KiB
Python
Raw Normal View History

# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors
2013-10-04 21:19:30 +05:30
# License: GNU General Public License v3. See license.txt
from __future__ import unicode_literals
2014-02-14 15:47:51 +05:30
import frappe
2013-10-04 21:19:30 +05:30
2016-01-04 15:57:01 +05:30
from frappe import _
from erpnext.accounts.report.utils import convert
import pandas as pd
2016-01-04 15:57:01 +05:30
2014-02-14 15:47:51 +05:30
@frappe.whitelist()
def get_funnel_data(from_date, to_date, company):
active_leads = frappe.db.sql("""select count(*) from `tabLead`
2013-10-31 19:06:11 +05:30
where (date(`modified`) between %s and %s)
and status != "Do Not Contact" and company=%s""", (from_date, to_date, company))[0][0]
2014-04-28 15:43:32 +05:30
2017-01-20 18:26:40 +05:30
active_leads += frappe.db.sql("""select count(distinct contact.name) from `tabContact` contact
left join `tabDynamic Link` dl on (dl.parent=contact.name) where dl.link_doctype='Customer'
and (date(contact.modified) between %s and %s) and status != "Passive" """, (from_date, to_date))[0][0]
2014-04-28 15:43:32 +05:30
opportunities = frappe.db.sql("""select count(*) from `tabOpportunity`
where (date(`creation`) between %s and %s)
and status != "Lost" and company=%s""", (from_date, to_date, company))[0][0]
2014-04-28 15:43:32 +05:30
quotations = frappe.db.sql("""select count(*) from `tabQuotation`
2013-10-31 19:06:11 +05:30
where docstatus = 1 and (date(`creation`) between %s and %s)
and status != "Lost" and company=%s""", (from_date, to_date, company))[0][0]
2014-04-28 15:43:32 +05:30
sales_orders = frappe.db.sql("""select count(*) from `tabSales Order`
where docstatus = 1 and (date(`creation`) between %s and %s) and company=%s""", (from_date, to_date, company))[0][0]
2014-04-28 15:43:32 +05:30
2013-10-04 21:19:30 +05:30
return [
2016-01-04 15:57:01 +05:30
{ "title": _("Active Leads / Customers"), "value": active_leads, "color": "#B03B46" },
{ "title": _("Opportunities"), "value": opportunities, "color": "#F09C00" },
{ "title": _("Quotations"), "value": quotations, "color": "#006685" },
{ "title": _("Sales Orders"), "value": sales_orders, "color": "#00AD65" }
2014-04-28 15:43:32 +05:30
]
@frappe.whitelist()
def get_opp_by_lead_source(from_date, to_date, company):
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability', 'source'])
if opportunities:
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
df = pd.DataFrame(cp_opportunities).groupby(['source', 'sales_stage'], as_index=False).agg({'compound_amount': 'sum'})
result = {}
result['labels'] = list(set(df.source.values))
result['datasets'] = []
for s in set(df.sales_stage.values):
result['datasets'].append({'name': s, 'values': [0]*len(result['labels']), 'chartType': 'bar'})
for row in df.itertuples():
source_index = result['labels'].index(row.source)
for dataset in result['datasets']:
if dataset['name'] == row.sales_stage:
dataset['values'][source_index] = row.compound_amount
return result
else:
return 'empty'
@frappe.whitelist()
def get_pipeline_data(from_date, to_date, company):
opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability'])
if opportunities:
default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency')
cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities]
df = pd.DataFrame(cp_opportunities).groupby(['sales_stage'], as_index=True).agg({'compound_amount': 'sum'}).to_dict()
result = {}
result['labels'] = df['compound_amount'].keys()
result['datasets'] = []
result['datasets'].append({'name': _("Total Amount"), 'values': df['compound_amount'].values(), 'chartType': 'bar'})
return result
else:
return 'empty'