157 lines
4.3 KiB
Python
Raw Normal View History

# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors
2013-10-04 21:19:30 +05:30
# License: GNU General Public License v3. See license.txt
from itertools import groupby
2013-10-04 21:19:30 +05:30
import frappe
2016-01-04 15:57:01 +05:30
from frappe import _
from frappe.utils import flt
from erpnext.accounts.report.utils import convert
2016-01-04 15:57:01 +05:30
def validate_filters(from_date, to_date, company):
if from_date and to_date and (from_date >= to_date):
frappe.throw(_("To Date must be greater than From Date"))
if not company:
frappe.throw(_("Please Select a Company"))
2022-03-28 18:52:46 +05:30
2014-02-14 15:47:51 +05:30
@frappe.whitelist()
def get_funnel_data(from_date, to_date, company):
validate_filters(from_date, to_date, company)
2022-03-28 18:52:46 +05:30
active_leads = frappe.db.sql(
"""select count(*) from `tabLead`
where (date(`creation`) between %s and %s)
2022-03-28 18:52:46 +05:30
and company=%s""",
(from_date, to_date, company),
)[0][0]
2014-04-28 15:43:32 +05:30
2022-03-28 18:52:46 +05:30
opportunities = frappe.db.sql(
"""select count(*) from `tabOpportunity`
where (date(`creation`) between %s and %s)
2022-03-28 18:52:46 +05:30
and opportunity_from='Lead' and company=%s""",
(from_date, to_date, company),
)[0][0]
2014-04-28 15:43:32 +05:30
2022-03-28 18:52:46 +05:30
quotations = frappe.db.sql(
"""select count(*) from `tabQuotation`
2013-10-31 19:06:11 +05:30
where docstatus = 1 and (date(`creation`) between %s and %s)
2022-03-28 18:52:46 +05:30
and (opportunity!="" or quotation_to="Lead") and company=%s""",
(from_date, to_date, company),
)[0][0]
2022-03-28 18:52:46 +05:30
converted = frappe.db.sql(
"""select count(*) from `tabCustomer`
JOIN `tabLead` ON `tabLead`.name = `tabCustomer`.lead_name
WHERE (date(`tabCustomer`.creation) between %s and %s)
2022-03-28 18:52:46 +05:30
and `tabLead`.company=%s""",
(from_date, to_date, company),
)[0][0]
2014-04-28 15:43:32 +05:30
2013-10-04 21:19:30 +05:30
return [
2022-03-28 18:52:46 +05:30
{"title": _("Active Leads"), "value": active_leads, "color": "#B03B46"},
{"title": _("Opportunities"), "value": opportunities, "color": "#F09C00"},
{"title": _("Quotations"), "value": quotations, "color": "#006685"},
{"title": _("Converted"), "value": converted, "color": "#00AD65"},
2014-04-28 15:43:32 +05:30
]
2022-03-28 18:52:46 +05:30
@frappe.whitelist()
def get_opp_by_lead_source(from_date, to_date, company):
validate_filters(from_date, to_date, company)
2022-03-28 18:52:46 +05:30
opportunities = frappe.get_all(
"Opportunity",
filters=[
["status", "in", ["Open", "Quotation", "Replied"]],
["company", "=", company],
["transaction_date", "Between", [from_date, to_date]],
],
fields=["currency", "sales_stage", "opportunity_amount", "probability", "source"],
)
if opportunities:
2022-03-28 18:52:46 +05:30
default_currency = frappe.get_cached_value("Global Defaults", "None", "default_currency")
cp_opportunities = [
dict(
x,
**{
"compound_amount": (
convert(x["opportunity_amount"], x["currency"], default_currency, to_date)
* x["probability"]
/ 100
)
}
)
for x in opportunities
]
summary = {}
sales_stages = set()
group_key = lambda o: (o["source"], o["sales_stage"]) # noqa
for (source, sales_stage), rows in groupby(cp_opportunities, group_key):
summary.setdefault(source, {})[sales_stage] = sum(r["compound_amount"] for r in rows)
sales_stages.add(sales_stage)
pivot_table = []
for sales_stage in sales_stages:
row = []
for source, sales_stage_values in summary.items():
row.append(flt(sales_stage_values.get(sales_stage)))
pivot_table.append({"chartType": "bar", "name": sales_stage, "values": row})
result = {"datasets": pivot_table, "labels": list(summary.keys())}
return result
else:
2022-03-28 18:52:46 +05:30
return "empty"
@frappe.whitelist()
def get_pipeline_data(from_date, to_date, company):
validate_filters(from_date, to_date, company)
2022-03-28 18:52:46 +05:30
opportunities = frappe.get_all(
"Opportunity",
filters=[
["status", "in", ["Open", "Quotation", "Replied"]],
["company", "=", company],
["transaction_date", "Between", [from_date, to_date]],
],
fields=["currency", "sales_stage", "opportunity_amount", "probability"],
)
if opportunities:
2022-03-28 18:52:46 +05:30
default_currency = frappe.get_cached_value("Global Defaults", "None", "default_currency")
cp_opportunities = [
dict(
x,
**{
"compound_amount": (
convert(x["opportunity_amount"], x["currency"], default_currency, to_date)
* x["probability"]
/ 100
)
}
)
for x in opportunities
]
summary = {}
for sales_stage, rows in groupby(cp_opportunities, lambda o: o["sales_stage"]):
summary[sales_stage] = sum(flt(r["compound_amount"]) for r in rows)
result = {
"labels": list(summary.keys()),
"datasets": [{"name": _("Total Amount"), "values": list(summary.values()), "chartType": "bar"}],
}
return result
else:
2022-03-28 18:52:46 +05:30
return "empty"