brotherton-erpnext/erpnext/stock/report/stock_ageing/stock_ageing.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

451 lines
14 KiB
Python
Raw Normal View History

# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors
2013-12-26 05:37:58 +00:00
# License: GNU General Public License v3. See license.txt
from operator import itemgetter
from typing import Dict, List, Tuple, Union
2014-02-14 10:17:51 +00:00
import frappe
2014-09-11 08:15:27 +00:00
from frappe import _
from frappe.utils import cint, date_diff, flt
2019-07-22 10:00:18 +00:00
from erpnext.stock.doctype.serial_no.serial_no import get_serial_nos
2013-12-26 05:37:58 +00:00
Filters = frappe._dict
def execute(filters: Filters = None) -> Tuple:
2013-12-26 05:37:58 +00:00
to_date = filters["to_date"]
columns = get_columns(filters)
item_details = FIFOSlots(filters).generate()
data = format_report_data(filters, item_details, to_date)
chart_data = get_chart_data(data, filters)
return columns, data, None, chart_data
2019-10-03 13:49:42 +00:00
2022-03-28 13:22:46 +00:00
def format_report_data(filters: Filters, item_details: Dict, to_date: str) -> List[Dict]:
"Returns ordered, formatted data with ranges."
_func = itemgetter(1)
2013-12-26 05:37:58 +00:00
data = []
precision = cint(frappe.db.get_single_value("System Settings", "float_precision", cache=True))
for item, item_dict in item_details.items():
if not flt(item_dict.get("total_qty"), precision):
continue
earliest_age, latest_age = 0, 0
details = item_dict["details"]
2019-10-03 13:49:42 +00:00
fifo_queue = sorted(filter(_func, item_dict["fifo_queue"]), key=_func)
if not fifo_queue:
continue
2014-10-07 09:32:58 +00:00
2013-12-26 05:37:58 +00:00
average_age = get_average_age(fifo_queue, to_date)
earliest_age = date_diff(to_date, fifo_queue[0][1])
latest_age = date_diff(to_date, fifo_queue[-1][1])
range1, range2, range3, above_range3 = get_range_age(filters, fifo_queue, to_date, item_dict)
2014-10-07 09:32:58 +00:00
row = [details.name, details.item_name, details.description, details.item_group, details.brand]
2019-03-19 20:36:39 +00:00
if filters.get("show_warehouse_wise_stock"):
2019-03-19 20:36:39 +00:00
row.append(details.warehouse)
row.extend(
[
flt(item_dict.get("total_qty"), precision),
average_age,
range1,
range2,
range3,
above_range3,
earliest_age,
latest_age,
details.stock_uom,
]
)
2019-03-19 20:36:39 +00:00
data.append(row)
2014-10-07 09:32:58 +00:00
return data
2022-03-28 13:22:46 +00:00
def get_average_age(fifo_queue: List, to_date: str) -> float:
2013-12-26 05:37:58 +00:00
batch_age = age_qty = total_qty = 0.0
for batch in fifo_queue:
batch_age = date_diff(to_date, batch[1])
if isinstance(batch[0], (int, float)):
age_qty += batch_age * batch[0]
total_qty += batch[0]
else:
age_qty += batch_age * 1
total_qty += 1
2014-10-07 09:32:58 +00:00
return flt(age_qty / total_qty, 2) if total_qty else 0.0
2014-10-07 09:32:58 +00:00
2022-03-28 13:22:46 +00:00
def get_range_age(filters: Filters, fifo_queue: List, to_date: str, item_dict: Dict) -> Tuple:
precision = cint(frappe.db.get_single_value("System Settings", "float_precision", cache=True))
range1 = range2 = range3 = above_range3 = 0.0
for item in fifo_queue:
age = flt(date_diff(to_date, item[1]))
qty = flt(item[0]) if not item_dict["has_serial_no"] else 1.0
if age <= flt(filters.range1):
2022-02-18 13:22:42 +00:00
range1 = flt(range1 + qty, precision)
elif age <= flt(filters.range2):
2022-02-18 13:22:42 +00:00
range2 = flt(range2 + qty, precision)
elif age <= flt(filters.range3):
2022-02-18 13:22:42 +00:00
range3 = flt(range3 + qty, precision)
else:
2022-02-18 13:22:42 +00:00
above_range3 = flt(above_range3 + qty, precision)
return range1, range2, range3, above_range3
2022-03-28 13:22:46 +00:00
def get_columns(filters: Filters) -> List[Dict]:
range_columns = []
setup_ageing_columns(filters, range_columns)
2019-07-10 09:19:25 +00:00
columns = [
{
"label": _("Item Code"),
"fieldname": "item_code",
"fieldtype": "Link",
"options": "Item",
"width": 100,
},
{"label": _("Item Name"), "fieldname": "item_name", "fieldtype": "Data", "width": 100},
{"label": _("Description"), "fieldname": "description", "fieldtype": "Data", "width": 200},
2019-07-10 09:19:25 +00:00
{
"label": _("Item Group"),
"fieldname": "item_group",
"fieldtype": "Link",
"options": "Item Group",
"width": 100,
},
{
"label": _("Brand"),
"fieldname": "brand",
"fieldtype": "Link",
"options": "Brand",
"width": 100,
},
]
2019-03-19 20:36:39 +00:00
if filters.get("show_warehouse_wise_stock"):
2019-07-10 09:19:25 +00:00
columns += [
{
"label": _("Warehouse"),
"fieldname": "warehouse",
"fieldtype": "Link",
"options": "Warehouse",
"width": 100,
}
]
2022-03-28 13:22:46 +00:00
2019-07-10 09:19:25 +00:00
columns.extend(
[
{"label": _("Available Qty"), "fieldname": "qty", "fieldtype": "Float", "width": 100},
{"label": _("Average Age"), "fieldname": "average_age", "fieldtype": "Float", "width": 100},
2022-03-28 13:22:46 +00:00
]
)
columns.extend(range_columns)
columns.extend(
[
2019-07-10 09:19:25 +00:00
{"label": _("Earliest"), "fieldname": "earliest", "fieldtype": "Int", "width": 80},
{"label": _("Latest"), "fieldname": "latest", "fieldtype": "Int", "width": 80},
{"label": _("UOM"), "fieldname": "uom", "fieldtype": "Link", "options": "UOM", "width": 100},
]
)
2019-03-19 20:36:39 +00:00
return columns
2014-10-07 09:32:58 +00:00
2022-03-28 13:22:46 +00:00
def get_chart_data(data: List, filters: Filters) -> Dict:
if not data:
return []
labels, datapoints = [], []
if filters.get("show_warehouse_wise_stock"):
return {}
data.sort(key=lambda row: row[6], reverse=True)
if len(data) > 10:
data = data[:10]
for row in data:
labels.append(row[0])
datapoints.append(row[6])
return {
"data": {"labels": labels, "datasets": [{"name": _("Average Age"), "values": datapoints}]},
"type": "bar",
}
2022-03-28 13:22:46 +00:00
def setup_ageing_columns(filters: Filters, range_columns: List):
ranges = [
f"0 - {filters['range1']}",
f"{cint(filters['range1']) + 1} - {cint(filters['range2'])}",
f"{cint(filters['range2']) + 1} - {cint(filters['range3'])}",
2022-10-26 04:39:05 +00:00
_("{0} - Above").format(cint(filters["range3"]) + 1),
]
for i, label in enumerate(ranges):
fieldname = "range" + str(i + 1)
add_column(range_columns, label=_("Age ({0})").format(label), fieldname=fieldname)
2022-03-28 13:22:46 +00:00
def add_column(
range_columns: List, label: str, fieldname: str, fieldtype: str = "Float", width: int = 140
):
range_columns.append(dict(label=label, fieldname=fieldname, fieldtype=fieldtype, width=width))
class FIFOSlots:
"Returns FIFO computed slots of inwarded stock as per date."
def __init__(self, filters: Dict = None, sle: List = None):
self.item_details = {}
self.transferred_item_details = {}
self.serial_no_batch_purchase_details = {}
self.filters = filters
self.sle = sle
def generate(self) -> Dict:
"""
Returns dict of the foll.g structure:
Key = Item A / (Item A, Warehouse A)
Key: {
'details' -> Dict: ** item details **,
'fifo_queue' -> List: ** list of lists containing entries/slots for existing stock,
consumed/updated and maintained via FIFO. **
}
"""
if self.sle is None:
self.sle = self.__get_stock_ledger_entries()
for d in self.sle:
key, fifo_queue, transferred_item_key = self.__init_key_stores(d)
if d.voucher_type == "Stock Reconciliation":
# get difference in qty shift as actual qty
prev_balance_qty = self.item_details[key].get("qty_after_transaction", 0)
d.actual_qty = flt(d.qty_after_transaction) - flt(prev_balance_qty)
serial_nos = get_serial_nos(d.serial_no) if d.serial_no else []
if d.actual_qty > 0:
self.__compute_incoming_stock(d, fifo_queue, transferred_item_key, serial_nos)
else:
self.__compute_outgoing_stock(d, fifo_queue, transferred_item_key, serial_nos)
self.__update_balances(d, key)
if not self.filters.get("show_warehouse_wise_stock"):
# (Item 1, WH 1), (Item 1, WH 2) => (Item 1)
self.item_details = self.__aggregate_details_by_item(self.item_details)
return self.item_details
def __init_key_stores(self, row: Dict) -> Tuple:
"Initialise keys and FIFO Queue."
key = (row.name, row.warehouse)
self.item_details.setdefault(key, {"details": row, "fifo_queue": []})
fifo_queue = self.item_details[key]["fifo_queue"]
transferred_item_key = (row.voucher_no, row.name, row.warehouse)
self.transferred_item_details.setdefault(transferred_item_key, [])
return key, fifo_queue, transferred_item_key
def __compute_incoming_stock(
self, row: Dict, fifo_queue: List, transfer_key: Tuple, serial_nos: List
):
"Update FIFO Queue on inward stock."
transfer_data = self.transferred_item_details.get(transfer_key)
if transfer_data:
# inward/outward from same voucher, item & warehouse
# eg: Repack with same item, Stock reco for batch item
# consume transfer data and add stock to fifo queue
self.__adjust_incoming_transfer_qty(transfer_data, fifo_queue, row)
else:
if not serial_nos and not row.get("has_serial_no"):
if fifo_queue and flt(fifo_queue[0][0]) <= 0:
# neutralize 0/negative stock by adding positive stock
fifo_queue[0][0] += flt(row.actual_qty)
fifo_queue[0][1] = row.posting_date
else:
fifo_queue.append([flt(row.actual_qty), row.posting_date])
return
for serial_no in serial_nos:
if self.serial_no_batch_purchase_details.get(serial_no):
fifo_queue.append([serial_no, self.serial_no_batch_purchase_details.get(serial_no)])
else:
self.serial_no_batch_purchase_details.setdefault(serial_no, row.posting_date)
fifo_queue.append([serial_no, row.posting_date])
def __compute_outgoing_stock(
self, row: Dict, fifo_queue: List, transfer_key: Tuple, serial_nos: List
):
"Update FIFO Queue on outward stock."
if serial_nos:
fifo_queue[:] = [serial_no for serial_no in fifo_queue if serial_no[0] not in serial_nos]
return
qty_to_pop = abs(row.actual_qty)
while qty_to_pop:
slot = fifo_queue[0] if fifo_queue else [0, None]
if 0 < flt(slot[0]) <= qty_to_pop:
# qty to pop >= slot qty
# if +ve and not enough or exactly same balance in current slot, consume whole slot
qty_to_pop -= flt(slot[0])
self.transferred_item_details[transfer_key].append(fifo_queue.pop(0))
elif not fifo_queue:
# negative stock, no balance but qty yet to consume
fifo_queue.append([-(qty_to_pop), row.posting_date])
self.transferred_item_details[transfer_key].append([qty_to_pop, row.posting_date])
qty_to_pop = 0
else:
# qty to pop < slot qty, ample balance
# consume actual_qty from first slot
slot[0] = flt(slot[0]) - qty_to_pop
self.transferred_item_details[transfer_key].append([qty_to_pop, slot[1]])
qty_to_pop = 0
def __adjust_incoming_transfer_qty(self, transfer_data: Dict, fifo_queue: List, row: Dict):
"Add previously removed stock back to FIFO Queue."
transfer_qty_to_pop = flt(row.actual_qty)
def add_to_fifo_queue(slot):
if fifo_queue and flt(fifo_queue[0][0]) <= 0:
# neutralize 0/negative stock by adding positive stock
fifo_queue[0][0] += flt(slot[0])
fifo_queue[0][1] = slot[1]
else:
fifo_queue.append(slot)
while transfer_qty_to_pop:
if transfer_data and 0 < transfer_data[0][0] <= transfer_qty_to_pop:
# bucket qty is not enough, consume whole
transfer_qty_to_pop -= transfer_data[0][0]
add_to_fifo_queue(transfer_data.pop(0))
elif not transfer_data:
# transfer bucket is empty, extra incoming qty
add_to_fifo_queue([transfer_qty_to_pop, row.posting_date])
transfer_qty_to_pop = 0
else:
# ample bucket qty to consume
transfer_data[0][0] -= transfer_qty_to_pop
add_to_fifo_queue([transfer_qty_to_pop, transfer_data[0][1]])
transfer_qty_to_pop = 0
def __update_balances(self, row: Dict, key: Union[Tuple, str]):
self.item_details[key]["qty_after_transaction"] = row.qty_after_transaction
if "total_qty" not in self.item_details[key]:
self.item_details[key]["total_qty"] = row.actual_qty
else:
self.item_details[key]["total_qty"] += row.actual_qty
self.item_details[key]["has_serial_no"] = row.has_serial_no
def __aggregate_details_by_item(self, wh_wise_data: Dict) -> Dict:
"Aggregate Item-Wh wise data into single Item entry."
item_aggregated_data = {}
for key, row in wh_wise_data.items():
item = key[0]
if not item_aggregated_data.get(item):
item_aggregated_data.setdefault(
item,
{"details": frappe._dict(), "fifo_queue": [], "qty_after_transaction": 0.0, "total_qty": 0.0},
)
item_row = item_aggregated_data.get(item)
item_row["details"].update(row["details"])
item_row["fifo_queue"].extend(row["fifo_queue"])
item_row["qty_after_transaction"] += flt(row["qty_after_transaction"])
item_row["total_qty"] += flt(row["total_qty"])
item_row["has_serial_no"] = row["has_serial_no"]
return item_aggregated_data
def __get_stock_ledger_entries(self) -> List[Dict]:
2021-12-27 15:39:05 +00:00
sle = frappe.qb.DocType("Stock Ledger Entry")
item = self.__get_item_query() # used as derived table in sle query
sle_query = (
frappe.qb.from_(sle)
.from_(item)
.select(
item.name,
item.item_name,
item.item_group,
item.brand,
item.description,
item.stock_uom,
item.has_serial_no,
2021-12-27 15:39:05 +00:00
sle.actual_qty,
sle.posting_date,
sle.voucher_type,
sle.voucher_no,
sle.serial_no,
sle.batch_no,
sle.qty_after_transaction,
sle.warehouse,
)
.where(
(sle.item_code == item.name)
& (sle.company == self.filters.get("company"))
& (sle.posting_date <= self.filters.get("to_date"))
& (sle.is_cancelled != 1)
)
)
if self.filters.get("warehouse"):
sle_query = self.__get_warehouse_conditions(sle, sle_query)
sle_query = sle_query.orderby(sle.posting_date, sle.posting_time, sle.creation, sle.actual_qty)
return sle_query.run(as_dict=True)
def __get_item_query(self) -> str:
item_table = frappe.qb.DocType("Item")
item = frappe.qb.from_("Item").select(
"name", "item_name", "description", "stock_uom", "brand", "item_group", "has_serial_no"
)
if self.filters.get("item_code"):
2021-12-27 15:39:05 +00:00
item = item.where(item_table.item_code == self.filters.get("item_code"))
if self.filters.get("brand"):
2021-12-27 15:39:05 +00:00
item = item.where(item_table.brand == self.filters.get("brand"))
return item
2021-12-27 15:39:05 +00:00
def __get_warehouse_conditions(self, sle, sle_query) -> str:
warehouse = frappe.qb.DocType("Warehouse")
lft, rgt = frappe.db.get_value("Warehouse", self.filters.get("warehouse"), ["lft", "rgt"])
2021-12-27 15:39:05 +00:00
warehouse_results = (
frappe.qb.from_(warehouse)
.select("name")
.where((warehouse.lft >= lft) & (warehouse.rgt <= rgt))
.run()
2021-12-27 15:39:05 +00:00
)
warehouse_results = [x[0] for x in warehouse_results]
2021-12-27 15:39:05 +00:00
return sle_query.where(sle.warehouse.isin(warehouse_results))