Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

268 lines
8.3 KiB
Python
Raw Normal View History

# Copyright (c) 2013, Frappe Technologies Pvt. Ltd. and contributors
# For license information, please see license.txt
import datetime
from typing import List
import frappe
from frappe import _, scrub
from frappe.utils import get_first_day as get_first_day_of_month
from frappe.utils import get_first_day_of_week, get_quarter_start, getdate
from erpnext.accounts.utils import get_fiscal_year
from erpnext.stock.report.stock_balance.stock_balance import (
get_item_details,
get_items,
get_stock_ledger_entries,
)
Repost item valuation (#24031) * feat: Reposting logic for future finished/transferred item * feat: added fields to identify needs to recalculate rate while reposting * refactor: Set rate for outgoing and finished items * refactor: Arranged fields in Stock Entry item table and added fields to identify finished and scrap item * refactor: Arranged fields in Stock Entry item table and added fields to identify finished and scrap item * refactor: Get outgoing rate for purchase return * refactor: Get incoming rate for sales return * test: Added tests for reposting valuation of transferred/finished/returned items * feat: added incoming rate field in DN, SI and Packed Item table * feat: get incoming rate for returned item * fix: no error while getting valuation rate in stock entry * fix: update stock ledger for DN and SI * feat: update item valuation rate in PR and PI based on supplied items cost * feat: SLE reposting logic for sales return and subcontracted item with test cases * feat: update qty in future sle * feat: repost future sle and gle via Repost Item Valuation * fix: Skip unwanted function calling while reposting * fix: repost sle for specific item and warehouse * test: Modified tests for backdated stock reco * fix: ignore cancelled sle in few methods * feat: role allowed to do backdated entry * feat: Show reposting status on stock valuation related reports * fix: minor fixes * fix: fixed sider issues * fix: serial no fix related to immutable ledger * fix: Test cases fixes related to perpetual inventory * fix: Test cases fixed * fix: Fixed reposting on cancel and test cases * feat: Restart reposting item valuation * refactor: Code cleanup using small functions and test case fixes * fix: minor fixes * fix: Raise on error while reposting item valuation * fix: minor fix * fix: Tests fixed * fix: skip some validation ig gle made from reposting * fix: test fixes * fix: debugging stock and account validation * fix: debugging stock and account validation * fix: debugging travis for stock and account sync validation * fix: debugging travis * fix: debugging travis * fix: debugging travis
2020-12-21 14:45:50 +05:30
from erpnext.stock.utils import is_reposting_item_valuation_in_progress
def execute(filters=None):
Repost item valuation (#24031) * feat: Reposting logic for future finished/transferred item * feat: added fields to identify needs to recalculate rate while reposting * refactor: Set rate for outgoing and finished items * refactor: Arranged fields in Stock Entry item table and added fields to identify finished and scrap item * refactor: Arranged fields in Stock Entry item table and added fields to identify finished and scrap item * refactor: Get outgoing rate for purchase return * refactor: Get incoming rate for sales return * test: Added tests for reposting valuation of transferred/finished/returned items * feat: added incoming rate field in DN, SI and Packed Item table * feat: get incoming rate for returned item * fix: no error while getting valuation rate in stock entry * fix: update stock ledger for DN and SI * feat: update item valuation rate in PR and PI based on supplied items cost * feat: SLE reposting logic for sales return and subcontracted item with test cases * feat: update qty in future sle * feat: repost future sle and gle via Repost Item Valuation * fix: Skip unwanted function calling while reposting * fix: repost sle for specific item and warehouse * test: Modified tests for backdated stock reco * fix: ignore cancelled sle in few methods * feat: role allowed to do backdated entry * feat: Show reposting status on stock valuation related reports * fix: minor fixes * fix: fixed sider issues * fix: serial no fix related to immutable ledger * fix: Test cases fixes related to perpetual inventory * fix: Test cases fixed * fix: Fixed reposting on cancel and test cases * feat: Restart reposting item valuation * refactor: Code cleanup using small functions and test case fixes * fix: minor fixes * fix: Raise on error while reposting item valuation * fix: minor fix * fix: Tests fixed * fix: skip some validation ig gle made from reposting * fix: test fixes * fix: debugging stock and account validation * fix: debugging stock and account validation * fix: debugging travis for stock and account sync validation * fix: debugging travis * fix: debugging travis * fix: debugging travis
2020-12-21 14:45:50 +05:30
is_reposting_item_valuation_in_progress()
filters = frappe._dict(filters or {})
columns = get_columns(filters)
data = get_data(filters)
chart = get_chart_data(columns)
return columns, data, None, chart
2022-03-28 18:52:46 +05:30
def get_columns(filters):
columns = [
{"label": _("Item"), "options": "Item", "fieldname": "name", "fieldtype": "Link", "width": 140},
{
"label": _("Item Name"),
"options": "Item",
"fieldname": "item_name",
"fieldtype": "Link",
"width": 140,
},
{
"label": _("Item Group"),
"options": "Item Group",
"fieldname": "item_group",
"fieldtype": "Link",
"width": 140,
},
{"label": _("Brand"), "fieldname": "brand", "fieldtype": "Data", "width": 120},
{"label": _("UOM"), "fieldname": "uom", "fieldtype": "Data", "width": 120},
]
ranges = get_period_date_ranges(filters)
for dummy, end_date in ranges:
period = get_period(end_date, filters)
columns.append(
{"label": _(period), "fieldname": scrub(period), "fieldtype": "Float", "width": 120}
)
return columns
2022-03-28 18:52:46 +05:30
def get_period_date_ranges(filters):
from dateutil.relativedelta import relativedelta
2022-03-28 18:52:46 +05:30
from_date = round_down_to_nearest_frequency(filters.from_date, filters.range)
to_date = getdate(filters.to_date)
increment = {"Monthly": 1, "Quarterly": 3, "Half-Yearly": 6, "Yearly": 12}.get(filters.range, 1)
periodic_daterange = []
for dummy in range(1, 53, increment):
if filters.range == "Weekly":
period_end_date = from_date + relativedelta(days=6)
else:
period_end_date = from_date + relativedelta(months=increment, days=-1)
if period_end_date > to_date:
period_end_date = to_date
periodic_daterange.append([from_date, period_end_date])
from_date = period_end_date + relativedelta(days=1)
if period_end_date == to_date:
break
return periodic_daterange
def round_down_to_nearest_frequency(date: str, frequency: str) -> datetime.datetime:
"""Rounds down the date to nearest frequency unit.
example:
>>> round_down_to_nearest_frequency("2021-02-21", "Monthly")
datetime.datetime(2021, 2, 1)
>>> round_down_to_nearest_frequency("2021-08-21", "Yearly")
datetime.datetime(2021, 1, 1)
"""
def _get_first_day_of_fiscal_year(date):
fiscal_year = get_fiscal_year(date)
return fiscal_year and fiscal_year[1] or date
round_down_function = {
"Monthly": get_first_day_of_month,
"Quarterly": get_quarter_start,
"Weekly": get_first_day_of_week,
"Yearly": _get_first_day_of_fiscal_year,
}.get(frequency, getdate)
return round_down_function(date)
def get_period(posting_date, filters):
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
if filters.range == "Weekly":
period = _("Week {0} {1}").format(str(posting_date.isocalendar()[1]), str(posting_date.year))
elif filters.range == "Monthly":
period = _(str(months[posting_date.month - 1])) + " " + str(posting_date.year)
elif filters.range == "Quarterly":
2022-10-25 22:35:37 -06:00
period = _("Quarter {0} {1}").format(
str(((posting_date.month - 1) // 3) + 1), str(posting_date.year)
)
else:
year = get_fiscal_year(posting_date, company=filters.company)
period = str(year[2])
return period
def get_periodic_data(entry, filters):
"""Structured as:
Item 1
- Balance (updated and carried forward):
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jun 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jul 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
Item 2
- Balance (updated and carried forward):
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jun 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
- Jul 2021 (sum of warehouse quantities used in report)
- Warehouse A : bal_qty/value
- Warehouse B : bal_qty/value
"""
expected_ranges = get_period_date_ranges(filters)
expected_periods = []
for _start_date, end_date in expected_ranges:
expected_periods.append(get_period(end_date, filters))
periodic_data = {}
for d in entry:
period = get_period(d.posting_date, filters)
bal_qty = 0
fill_intermediate_periods(periodic_data, d.item_code, period, expected_periods)
# if period against item does not exist yet, instantiate it
# insert existing balance dict against period, and add/subtract to it
if periodic_data.get(d.item_code) and not periodic_data.get(d.item_code).get(period):
previous_balance = periodic_data[d.item_code]["balance"].copy()
periodic_data[d.item_code][period] = previous_balance
if d.voucher_type == "Stock Reconciliation" and not d.batch_no:
if periodic_data.get(d.item_code) and periodic_data.get(d.item_code).get("balance").get(
d.warehouse
):
bal_qty = periodic_data[d.item_code]["balance"][d.warehouse]
qty_diff = d.qty_after_transaction - bal_qty
else:
qty_diff = d.actual_qty
if filters["value_quantity"] == "Quantity":
value = qty_diff
else:
value = d.stock_value_difference
# period-warehouse wise balance
periodic_data.setdefault(d.item_code, {}).setdefault("balance", {}).setdefault(d.warehouse, 0.0)
periodic_data.setdefault(d.item_code, {}).setdefault(period, {}).setdefault(d.warehouse, 0.0)
periodic_data[d.item_code]["balance"][d.warehouse] += value
periodic_data[d.item_code][period][d.warehouse] = periodic_data[d.item_code]["balance"][
d.warehouse
]
return periodic_data
2022-03-28 18:52:46 +05:30
def fill_intermediate_periods(
periodic_data, item_code: str, current_period: str, all_periods: List[str]
) -> None:
"""There might be intermediate periods where no stock ledger entry exists, copy previous previous data.
Previous data is ONLY copied if period falls in report range and before period being processed currently.
args:
current_period: process till this period (exclusive)
all_periods: all periods expected in report via filters
periodic_data: report's periodic data
item_code: item_code being processed
"""
previous_period_data = None
for period in all_periods:
if period == current_period:
return
if (
periodic_data.get(item_code)
and not periodic_data.get(item_code).get(period)
and previous_period_data
):
# This period should exist since it's in report range, assign previous period data
periodic_data[item_code][period] = previous_period_data.copy()
previous_period_data = periodic_data.get(item_code, {}).get(period)
def get_data(filters):
data = []
items = get_items(filters)
sle = get_stock_ledger_entries(filters, items)
item_details = get_item_details(items, sle, filters)
periodic_data = get_periodic_data(sle, filters)
ranges = get_period_date_ranges(filters)
today = getdate()
for dummy, item_data in item_details.items():
row = {
"name": item_data.name,
"item_name": item_data.item_name,
"item_group": item_data.item_group,
"uom": item_data.stock_uom,
"brand": item_data.brand,
}
previous_period_value = 0.0
for start_date, end_date in ranges:
period = get_period(end_date, filters)
period_data = periodic_data.get(item_data.name, {}).get(period)
if period_data:
row[scrub(period)] = previous_period_value = sum(period_data.values())
else:
row[scrub(period)] = previous_period_value if today >= start_date else None
data.append(row)
return data
2022-03-28 18:52:46 +05:30
def get_chart_data(columns):
2018-11-26 16:52:15 +05:30
labels = [d.get("label") for d in columns[5:]]
chart = {"data": {"labels": labels, "datasets": []}}
chart["type"] = "line"
return chart