brotherton-erpnext/erpnext/regional/report/datev/datev.py

442 lines
12 KiB
Python
Raw Normal View History

# coding: utf-8
"""
Provide a report and downloadable CSV according to the German DATEV format.
- Query report showing only the columns that contain data, formatted nicely for
dispay to the user.
- CSV download functionality `download_datev_csv` that provides a CSV file with
all required columns. Used to import the data into the DATEV Software.
"""
from __future__ import unicode_literals
2019-07-08 12:48:54 +00:00
import datetime
import json
from six import string_types
import frappe
from frappe import _
import pandas as pd
def execute(filters=None):
"""Entry point for frappe."""
validate_filters(filters)
result = get_gl_entries(filters, as_dict=0)
columns = get_columns()
return columns, result
def validate_filters(filters):
"""Make sure all mandatory filters are present."""
if not filters.get('company'):
frappe.throw(_('{0} is mandatory').format(_('Company')))
if not filters.get('from_date'):
frappe.throw(_('{0} is mandatory').format(_('From Date')))
if not filters.get('to_date'):
frappe.throw(_('{0} is mandatory').format(_('To Date')))
def get_columns():
"""Return the list of columns that will be shown in query report."""
columns = [
{
"label": "Umsatz (ohne Soll/Haben-Kz)",
"fieldname": "Umsatz (ohne Soll/Haben-Kz)",
"fieldtype": "Currency",
},
{
"label": "Soll/Haben-Kennzeichen",
"fieldname": "Soll/Haben-Kennzeichen",
"fieldtype": "Data",
},
{
"label": "Kontonummer",
"fieldname": "Kontonummer",
"fieldtype": "Data",
},
{
"label": "Gegenkonto (ohne BU-Schlüssel)",
"fieldname": "Gegenkonto (ohne BU-Schlüssel)",
"fieldtype": "Data",
},
{
"label": "Belegdatum",
"fieldname": "Belegdatum",
"fieldtype": "Date",
},
{
"label": "Buchungstext",
"fieldname": "Buchungstext",
"fieldtype": "Text",
},
{
"label": "Beleginfo - Art 1",
"fieldname": "Beleginfo - Art 1",
"fieldtype": "Data",
},
{
"label": "Beleginfo - Inhalt 1",
"fieldname": "Beleginfo - Inhalt 1",
"fieldtype": "Data",
},
{
"label": "Beleginfo - Art 2",
"fieldname": "Beleginfo - Art 2",
"fieldtype": "Data",
},
{
"label": "Beleginfo - Inhalt 2",
"fieldname": "Beleginfo - Inhalt 2",
"fieldtype": "Data",
}
]
return columns
def get_gl_entries(filters, as_dict):
"""
Get a list of accounting entries.
Select GL Entries joined with Account and Party Account in order to get the
account numbers. Returns a list of accounting entries.
Arguments:
filters -- dict of filters to be passed to the sql query
as_dict -- return as list of dicts [0,1]
"""
gl_entries = frappe.db.sql("""
select
/* either debit or credit amount; always positive */
case gl.debit when 0 then gl.credit else gl.debit end as 'Umsatz (ohne Soll/Haben-Kz)',
/* 'H' when credit, 'S' when debit */
case gl.debit when 0 then 'H' else 'S' end as 'Soll/Haben-Kennzeichen',
/* account number or, if empty, party account number */
coalesce(acc.account_number, acc_pa.account_number) as 'Kontonummer',
/* against number or, if empty, party against number */
coalesce(acc_against.account_number, acc_against_pa.account_number) as 'Gegenkonto (ohne BU-Schlüssel)',
gl.posting_date as 'Belegdatum',
gl.remarks as 'Buchungstext',
gl.voucher_type as 'Beleginfo - Art 1',
gl.voucher_no as 'Beleginfo - Inhalt 1',
gl.against_voucher_type as 'Beleginfo - Art 2',
gl.against_voucher as 'Beleginfo - Inhalt 2'
from `tabGL Entry` gl
/* Statistisches Konto (Debitoren/Kreditoren) */
left join `tabParty Account` pa
on gl.against = pa.parent
and gl.company = pa.company
/* Kontonummer */
left join `tabAccount` acc
on gl.account = acc.name
/* Gegenkonto-Nummer */
left join `tabAccount` acc_against
on gl.against = acc_against.name
/* Statistische Kontonummer */
left join `tabAccount` acc_pa
on pa.account = acc_pa.name
/* Statistische Gegenkonto-Nummer */
left join `tabAccount` acc_against_pa
on pa.account = acc_against_pa.name
where gl.company = %(company)s
and DATE(gl.posting_date) >= %(from_date)s
and DATE(gl.posting_date) <= %(to_date)s
order by 'Belegdatum', gl.voucher_no""", filters, as_dict=as_dict)
return gl_entries
2019-07-08 12:48:54 +00:00
def get_datev_csv(data, filters):
"""
Fill in missing columns and return a CSV in DATEV Format.
2019-07-08 12:48:54 +00:00
For automatic processing, DATEV requires the first line of the CSV file to
hold meta data such as the length of account numbers oder the category of
the data.
Arguments:
data -- array of dictionaries
2019-07-08 12:48:54 +00:00
filters -- dict
"""
2019-07-08 12:48:54 +00:00
header = [
# A = DATEV format
# DTVF = created by DATEV software,
# EXTF = created by other software
"EXTF",
# B = version of the DATEV format
# 141 = 1.41,
# 510 = 5.10,
# 720 = 7.20
"510",
# C = Data category
# 21 = Transaction batch (Buchungsstapel),
# 67 = Buchungstextkonstanten,
# 16 = Debitors/Creditors,
# 20 = Account names (Kontenbeschriftungen)
"21",
# D = Format name
# Buchungsstapel,
# Buchungstextkonstanten,
# Debitoren/Kreditoren,
# Kontenbeschriftungen
"Buchungsstapel",
# E = Format version (regarding format name)
"",
# F = Generated on
datetime.datetime.now().strftime("%Y%m%d"),
# G = Imported on -- stays empty
"",
# H = Origin (SV = other (?), RE = KARE)
"SV",
# I = Exported by
frappe.session.user,
# J = Imported by -- stays empty
"",
# K = Tax consultant number (Beraternummer)
# TODO: frappe.get_value("Company", filters.get("company"), "tax_consultant_number"),
"",
# L = Tax client number (Mandantennummer)
# TODO: frappe.get_value("Company", filters.get("company"), "tax_client_number"),
"",
# M = Start of the fiscal year (Wirtschaftsjahresbeginn)
"",
# N = Length of account numbers (Sachkontenlänge)
"4",
# O = Transaction batch start date (YYYYMMDD)
frappe.utils.formatdate(filters.get('from_date'), "yyyyMMdd"),
# P = Transaction batch end date (YYYYMMDD)
frappe.utils.formatdate(filters.get('to_date'), "yyyyMMdd"),
# Q = Description (for example, "January - February 2019 Transactions")
"{} - {} Buchungsstapel".format(
frappe.utils.formatdate(filters.get('from_date'), "MMMM yyyy"),
frappe.utils.formatdate(filters.get('to_date'), "MMMM yyyy")
),
# R = Diktatkürzel
"",
# S = Buchungstyp
# 1 = Transaction batch (Buchungsstapel),
# 2 = Annual financial statement (Jahresabschluss)
"1",
# T = Rechnungslegungszweck
"",
# U = Festschreibung
"",
# V = Kontoführungs-Währungskennzeichen des Geldkontos
frappe.get_value("Company", filters.get("company"), "default_currency")
]
columns = [
# All possible columns must tbe listed here, because DATEV requires them to
# be present in the CSV.
# ---
# Umsatz
"Umsatz (ohne Soll/Haben-Kz)",
"Soll/Haben-Kennzeichen",
"WKZ Umsatz",
"Kurs",
"Basis-Umsatz",
"WKZ Basis-Umsatz",
# Konto/Gegenkonto
"Kontonummer",
"Gegenkonto (ohne BU-Schlüssel)",
"BU-Schlüssel",
# Datum
"Belegdatum",
# Belegfelder
"Belegfeld 1",
"Belegfeld 2",
# Weitere Felder
"Skonto",
"Buchungstext",
# OPOS-Informationen
"Postensperre",
"Diverse Adressnummer",
"Geschäftspartnerbank",
"Sachverhalt",
"Zinssperre",
# Digitaler Beleg
"Beleglink",
# Beleginfo
"Beleginfo - Art 1",
"Beleginfo - Inhalt 1",
"Beleginfo - Art 2",
"Beleginfo - Inhalt 2",
"Beleginfo - Art 3",
"Beleginfo - Inhalt 3",
"Beleginfo - Art 4",
"Beleginfo - Inhalt 4",
"Beleginfo - Art 5",
"Beleginfo - Inhalt 5",
"Beleginfo - Art 6",
"Beleginfo - Inhalt 6",
"Beleginfo - Art 7",
"Beleginfo - Inhalt 7",
"Beleginfo - Art 8",
"Beleginfo - Inhalt 8",
# Kostenrechnung
"Kost 1 - Kostenstelle",
"Kost 2 - Kostenstelle",
"Kost-Menge",
# Steuerrechnung
"EU-Land u. UStID",
"EU-Steuersatz",
"Abw. Versteuerungsart",
# L+L Sachverhalt
"Sachverhalt L+L",
"Funktionsergänzung L+L",
# Funktion Steuerschlüssel 49
"BU 49 Hauptfunktionstyp",
"BU 49 Hauptfunktionsnummer",
"BU 49 Funktionsergänzung",
# Zusatzinformationen
"Zusatzinformation - Art 1",
"Zusatzinformation - Inhalt 1",
"Zusatzinformation - Art 2",
"Zusatzinformation - Inhalt 2",
"Zusatzinformation - Art 3",
"Zusatzinformation - Inhalt 3",
"Zusatzinformation - Art 4",
"Zusatzinformation - Inhalt 4",
"Zusatzinformation - Art 5",
"Zusatzinformation - Inhalt 5",
"Zusatzinformation - Art 6",
"Zusatzinformation - Inhalt 6",
"Zusatzinformation - Art 7",
"Zusatzinformation - Inhalt 7",
"Zusatzinformation - Art 8",
"Zusatzinformation - Inhalt 8",
"Zusatzinformation - Art 9",
"Zusatzinformation - Inhalt 9",
"Zusatzinformation - Art 10",
"Zusatzinformation - Inhalt 10",
"Zusatzinformation - Art 11",
"Zusatzinformation - Inhalt 11",
"Zusatzinformation - Art 12",
"Zusatzinformation - Inhalt 12",
"Zusatzinformation - Art 13",
"Zusatzinformation - Inhalt 13",
"Zusatzinformation - Art 14",
"Zusatzinformation - Inhalt 14",
"Zusatzinformation - Art 15",
"Zusatzinformation - Inhalt 15",
"Zusatzinformation - Art 16",
"Zusatzinformation - Inhalt 16",
"Zusatzinformation - Art 17",
"Zusatzinformation - Inhalt 17",
"Zusatzinformation - Art 18",
"Zusatzinformation - Inhalt 18",
"Zusatzinformation - Art 19",
"Zusatzinformation - Inhalt 19",
"Zusatzinformation - Art 20",
"Zusatzinformation - Inhalt 20",
# Mengenfelder LuF
"Stück",
"Gewicht",
# Forderungsart
"Zahlweise",
"Forderungsart",
"Veranlagungsjahr",
"Zugeordnete Fälligkeit",
# Weitere Felder
"Skontotyp",
# Anzahlungen
"Auftragsnummer",
"Buchungstyp",
"USt-Schlüssel (Anzahlungen)",
"EU-Land (Anzahlungen)",
"Sachverhalt L+L (Anzahlungen)",
"EU-Steuersatz (Anzahlungen)",
"Erlöskonto (Anzahlungen)",
# Stapelinformationen
"Herkunft-Kz",
# Technische Identifikation
"Buchungs GUID",
# Kostenrechnung
"Kost-Datum",
# OPOS-Informationen
"SEPA-Mandatsreferenz",
"Skontosperre",
# Gesellschafter und Sonderbilanzsachverhalt
"Gesellschaftername",
"Beteiligtennummer",
"Identifikationsnummer",
"Zeichnernummer",
# OPOS-Informationen
"Postensperre bis",
# Gesellschafter und Sonderbilanzsachverhalt
"Bezeichnung SoBil-Sachverhalt",
"Kennzeichen SoBil-Buchung",
# Stapelinformationen
"Festschreibung",
# Datum
"Leistungsdatum",
"Datum Zuord. Steuerperiode",
# OPOS-Informationen
"Fälligkeit",
# Konto/Gegenkonto
"Generalumkehr (GU)",
# Steuersatz für Steuerschlüssel
"Steuersatz",
"Land"
]
empty_df = pd.DataFrame(columns=columns)
data_df = pd.DataFrame.from_records(data)
result = empty_df.append(data_df)
2019-07-08 12:48:54 +00:00
result['Belegdatum'] = pd.to_datetime(result['Belegdatum'])
2019-07-08 12:48:54 +00:00
header = ';'.join(header).encode('latin_1')
data = result.to_csv(
sep=b';',
# European decimal seperator
decimal=',',
# Windows "ANSI" encoding
encoding='latin_1',
# format date as DDMM
date_format='%d%m',
# Windows line terminator
line_terminator=b'\r\n',
# Do not number rows
index=False,
# Use all columns defined above
columns=columns
)
2019-07-08 12:48:54 +00:00
return header + b'\r\n' + data
@frappe.whitelist()
def download_datev_csv(filters=None):
"""
Provide accounting entries for download in DATEV format.
Validate the filters, get the data, produce the CSV file and provide it for
download. Can be called like this:
GET /api/method/erpnext.regional.report.datev.datev.download_datev_csv
Arguments / Params:
filters -- dict of filters to be passed to the sql query
"""
if isinstance(filters, string_types):
filters = json.loads(filters)
validate_filters(filters)
data = get_gl_entries(filters, as_dict=1)
2019-07-08 12:48:54 +00:00
frappe.response['result'] = get_datev_csv(data, filters)
frappe.response['doctype'] = 'EXTF_Buchungsstapel'
frappe.response['type'] = 'csv'